Toggle menu
Toggle preferences menu
Toggle personal menu
Not logged in
Your IP address will be publicly visible if you make any edits.

Turret damage: Difference between revisions

From EVE University Wiki
Uryence (talk | contribs)
m Minor spelling/clarity edits. Didn't do any mathematical checking since maths is not my thing . . .
Line 208: Line 208:


==+0.49? It says +0.50 on EVEonline wiki==
==+0.49? It says +0.50 on EVEonline wiki==
Yes it does. But test was made to ensure the validity of this article and it showed a small deviance. There's too much data to present here, so the method and results will be presented instead. Should you wish to check for yourself feel free to follow this procedure.
Yes it does and the differance isn't exactly overwhelming. But the test that was made to ensure the validity of this article showed a small deviance. The test has too much collected data to present all of it here, so the method and results will be presented instead. Should you wish to check for yourself feel free to follow this procedure.


A frigate (named 'Ouch') was abandoned at a safespot. An Osprey was fitted with lasers (infinite ammo, perfect for afk:ing), a remote shield transfer and shield transfer drones. The guns and the ammo were chosen so that the damage would never go below 10.0 and to give as large of a damage interval as possible (an interval of at least 10.0 units (resistances must be accounted for) is needed to get a precision of 1%) -- this ensured that the data would be good enough to draw accurate conclusions. The damage was only done to the shields, they where never allowed to drop below 25% since a bleed through into armor can happen that can mess with the observed damage numbers. Finally, the ships were positioned within optimal range and their speeds set to zero to ensure that the chance to hit is 0.5^0 = 100% and nothing less.
A frigate (named 'Ouch') was abandoned at a safespot. An Osprey was fitted with lasers (infinite ammo, perfect for afk:ing), a remote shield transfer and shield transfer drones. The guns and the ammo were chosen so that the damage would never go below 10.0 and to give as large of a damage interval as possible (an interval of at least 10.0 units (resistances must be accounted for) is needed to get a precision of at least 1% in the damage values) -- this ensured that the data would be good enough to draw accurate conclusions. The damage was only done to the shields, they where never allowed to drop below 25% since a bleed through into armor can happen that can mess with the observed damage numbers. Finally, the ships were positioned within optimal range and their speeds set to zero to ensure that the chance to hit is 0.5^0 = 100% and nothing less.


After 10,656 shots at the poor frigate, enough data was collected to make some conclusions about how the random damage distribution looks like. The data ends up in the My Documents\EVE\gamelogs folder (in Windows), and was easily copied into a prepared Excel sheet for analysis.
After 10,656 shots at the poor frigate, enough data was collected to make some conclusions about how the random damage distribution looks like. The data ends up in the My Documents\EVE\gamelogs folder (in Windows), and was easily copied into a prepared Excel sheet for analysis.
Line 220: Line 220:


Analysis of the data and interpretation of some reduced frequencies of min and max results in the normal damage span:
Analysis of the data and interpretation of some reduced frequencies of min and max results in the normal damage span:
Of the 10,656 shots the lowest recorded damage was 11.4 (recorded 15 times) and the highest non-perfect was 34.0 (recorded 33 times), perfect hits dealt 68.5 damage (recorded 101 times). On average, each damage number (anything between 11.5 to 33.9) was recorded 46.7 times (standard deviation = 7.02). The reason for the lower occurences of the min and max results on normal hits comes from rounding effects. Any damage in-between has an interval of 0.1 units (22.2500 to 22.3499 both produce the 22.3 in the log). However the min and max values do not have that span. The lowest theoretical number is Base Damage x 0.5 = 11.415, hence the interval to get 11.4 in the log is between 11.415 and 11.4499, that is only 0.0345 differance. So the expected number of occurances of the value 11.4 is only 34.6% of the average number, 15 recorded values / 34.6% = 43.4, close to average and inside the standard deviation. The upper interval is 67.8%, 33 times / 67.8% = 48.7, also close to average and inside the standard deviation. (Note: 34.6%+67.8%=102.4%, which is of course impossible -- the error comes from rounding errors in the 4th decimal of the base damage, awesome precision isn't needed for this comparative calculation since the natural random deviation is much larger anyhow, so this is good enough).
 
Of the 10,656 shots the lowest recorded damage was 11.4 (recorded 15 times) and the highest non-perfect was 34.0 (recorded 33 times), perfect hits dealt 68.5 damage (recorded 101 times). On average, each damage number (anything between 11.5 to 33.9) was recorded 46.7 times (standard deviation = 7.02). The reason for the lower occurences of the min and max results on normal hits comes from rounding effects. Any damage in-between has an interval of 0.1 units (22.2500 to 22.3499 both produce the 22.3 in the log). However the min and max values do not have that span. The lowest theoretical number is Base Damage x 0.5 = 11.415, hence the interval to get 11.4 in the log is between 11.415 and 11.4499, that is only 0.0345 differance. So the expected number of occurances of the value 11.4 is only 34.6% of the average number, 15 recorded values / 34.6% = 43.4, close to average and inside the standard deviation. The upper interval is 67.8%, 33 times / 67.8% = 48.7, also close to average and inside the standard deviation. (Note: 34.6%+67.8%=102.4%, which is of course impossible -- the error comes from rounding errors in the 4th decimal of the base damage, awesome precision isn't needed for this comparative calculation since the natural random deviation is much larger anyhow, so this is good enough, the objective was to explain the lower frequencies of the end points which now has been done).


*Lowest damage random multiple
*Lowest damage random multiple
Line 236: Line 237:


The collected data shows that the normal damage is distributed within 50%-149%. Since the first 1% unit is used for critical rolls, this means that the constant has to be 0.49.
The collected data shows that the normal damage is distributed within 50%-149%. Since the first 1% unit is used for critical rolls, this means that the constant has to be 0.49.


=Tracking Examples=
=Tracking Examples=