Toggle menu
Toggle preferences menu
Toggle personal menu
Not logged in
Your IP address will be publicly visible if you make any edits.

Tanking: Difference between revisions

From EVE University Wiki
Uryence (talk | contribs)
No edit summary
Uryence (talk | contribs)
Basic concepts: Clarified, copy-edited.
Line 20: Line 20:
* Increasing damage resists. Higher resistance to damage strengthens any type of tank.
* Increasing damage resists. Higher resistance to damage strengthens any type of tank.
One special subtype of the "repair" approach, passive shield tanking, falls somewhat outside of this categorization, and will be discussed in more detail below.
One special subtype of the "repair" approach, passive shield tanking, falls somewhat outside of this categorization, and will be discussed in more detail below.
Discussions of tanking often invoke "EHP". This means "effective hit points", and refers to the effective hit points that your ship has when its resistance to damage is taken to account alongside its raw hit points.


=== Buffer tanking ===
=== Buffer tanking ===
The buffer tank is based around the principle of having high damage resistance and as many hit points as possible, thus increasing the Effective HitPoints (EHP) of the ship. The concept behind this is simple, add enough EHP to your ship to outlast your opponent through the use of active and/or passive resistance modules, which complement the HP increasing modules that add raw hit points.
A "buffer tank" tries to have high damage resistances and as many hit points as possible, thus increasing the EHP of the ship. The concept behind this is simple: outlast your opponent through the use of modules which boost your raw hit points, and modules which increase your resistance to damage.


This type of fitting uses a minimal amount of capacitor to run hardeners making it easily sustainable, but can be made fully passive by using only passive resistance modules instead. The primary drawback to Buffer Tanking is that you have no way to repair yourself, so when you run out of hit points you are toast.
This type of tank uses either no capacitor at all, or a minimal amount of capacitor used to run hardeners. This makes it easily sustainable. It also puts a lower cognitive load on pilots in combat: very little module management is necessary, freeing up a pilot's attention for other matters. The primary drawback to Buffer Tanking is that you have no way to repair yourself, so when you run out of hit points you are toast.


Most common in fleet PvP, but also group PvE with logistic support (like incursions, wormhole anomalies / signatures and a few others). In PvP, a fleet will overwhelm an active tank in fairly short order, whereas a buffer tank will give you more survival time. Although, some ships with faction gear and active tank bonuses can field some extremely resistant active tanks that can take on more than you might think.  
Buffer tanks are most commonly fitted for PvP combat. In fleet PvP, the rate of incoming damage can often exceed any possible active tank, making a buffer tank a more useful option. Since buffers cannot sustain damage over a long period, they are ill-suited to the kind of PvE combat found in [[missions]] and in challenges such as [[Abyssal Deadspace]]. In some forms of group PvE, however, players use buffer tanks and [[Logistics|logistics]] support together: this is common in [[Incursions]] and in [[Wormholes|wormhole]] PvE battles.


The effective hitpoints are product of raw HP and resist. In general if you are expecting to have Logistical support (friends to rep your armor) then you want to buffer tank more towards resistance, because the higher your resistances the more effective logistic reps are. While if you don't expect logistical support, you only care about the Effective Hit Points, so whatever combination gives you more effective hit points is the best option.
In general, if you are expecting to have logistics support, then you want to tilt your buffer tank more towards resistance rather than raw HP, because the higher your resistances, the more effective logistics reps are. While if you don't expect logistical support, you only care about the EHP, so whatever combination of raw HP and resistances gives you more effective hit points is the best option.


=== Active tanking===
=== Active tanking===


Active tanking is most commonly used for solo activities such as mission/complex running, ratting, and solo PvP. Active tanking differs from buffer tanking in that it uses armor repair or shield booster modules to actively repair damage done to the ship. You should be careful to include enough resistance and buffer to keep your repair modules from being overwhelmed by incoming damage; frequently this means packing resistance modules (either passive or active) that compensate for the specific types of damage you expect to be receiving.
An "active tank" uses armor repair or shield booster modules to restore damage done to the ship, "actively". Active tanks use energy from the ship's capacitor to run local armor-repairing or shield-boosting modules. So long as the incoming damage never exceeds your restoration capacity and your capacitor never gives out under the pressure, an active tank can last forever ("perma-tanking"). If either of these two things happens, your tank will collapse ("break") under the pressure.


This type of fitting takes a lot of capacitor to sustain your cap-hungry repair modules so it should ideally include modules such as cap rechargers, capacitor batteries or capcitor rigs to balance out and maintain capacitor stability.
Active tanks can achieve either high burst restoration or sustained restoration over a long (potentially endless) time period. They require more management from the pilot than buffer tanks, and are often vulnerable to [[Capacitor Warfare]] that drains the ship's capacitor dry.


Active Tanking uses energy from the ship's capacitor to run a local repair module. Active tanks are stronger against higher bursts of damage but tend to drain the pilot's capacitor over time resulting in the tank 'breaking' during long engagements and are vulnerable to [[Capacitor Warfare]] that drains the ships capacitor dry.
====Sustained active tanks====


Capacitor stability is important because it allows you to leave your tank modules turned on without ever worrying about running out of capacitor. So long as incoming damage is less than what your repair modules can handle your ship should be able to sustain that level of damage indefinitely. This is commonly referred to as perma-tanking. If incoming damage exceeds your repair capacity you will gradually run out of Hit Points and die. This is commonly referred to as breaking the tank.
In PvE, players usually need a permanent tank that can consistently restore a steady stream of moderate damage, forever.


For PvP purposes, a cap booster can be used to temporarily supplement capacitor output to allow for short bursts of heavy tanking. The primary drawback to this approach is that unlike the capacitor stable fitting described above, when you run out of charges to run your capacitor booster, you quickly run out of capacitor, your tank will fail and you will die horribly. Cap boosters, will also offer some safety against [[Capacitor warfare|neuting]] allowing you to keep on cycling modules even when your capacitor disappears in few seconds.
A PvE active tank uses one or more armor repairers or shield boosters, modules to boost either shield or armor resistances to damage, and modules to support the recharging of the ship's capacitor so that the rest of the tank can keep on running. For most PvE combat, players can look up ahead of time what types of damage they are likely to receive, and will fit modules which harden their resistances against that type of damage in particular.


Similarly, weapon systems that drain your ship's capacitor will effectively disable your active tanking modules. As above, your tank will fail and you will die horribly. In this case, the capacitor booster can be used on an otherwise capacitor stable fitting to provide emergency power to prevent being drained and destroyed.
Sustained active tanks are rare in PvP.


=== Ancillary Repair Modules ===
====Burst active tanks====


Ancillary Armor Repairers (AAR) and Ancillary Shield Boosters (ASB) are another way to field strong active tank for a short duration. These modules can be loaded with Nanite Repair Paste (armor) and Cap Boosters (shield). While these modules have charges, ancillary armor repairers repair far more hitpoints than any other repair module, and ancillary shield boosters consume 0 capacitor to cycle. However, once their charges run out (in general after 8 cycles for an armor repairer or 9 cycles for a shield booster), the armor repairer becomes very weak and inefficient, and the shield booster becomes prohibitively capacitor-intensive. Ancillary repair modules have a 60 second reload time to reload their charges. Only one ancillary armor repairer, or capital ancillary shield booster, can be fitted to a ship. Because of the combination of reload time and charge consumption, ancillary repair modules are almost never used in PvE, however they are very popular in solo PvP.
Though fleet PvP can deliver incoming damage beyond the capacity of any subcapital sustained active tank, solo and small gang PvP often involves lower incoming damage, which a short-term active tank can fend off. The modules central to this tactic are Ancillary Armor Repairers (AAR) and Ancillary Shield Boosters (ASB). These modules can be loaded with Nanite Repair Paste (armor) and Cap Boosters (shield). While these modules have charges, ancillary armor repairers repair far more hitpoints than any other repair module, and ancillary shield boosters consume 0 capacitor to cycle.
 
However, once their charges run out (in general after 8 cycles for an armor repairer or 9 cycles for a shield booster), the AAR becomes very weak and inefficient, and the ASB becomes prohibitively capacitor-intensive. Ancillary repair modules have a 60 second reload time to refresh their charges from your cargo hold. Only one ancillary armor repairer, or capital ancillary shield booster, can be fitted to a ship.


The size of charges used and the rate at which they are consumed is based on the size of the module. Larger ancillary armor repairers hold more paste, but consume more paste per cycle, and larger ancillary shield boosters require larger cap charges to be loaded. While ancillary shield boosters may have multiple different sizes of charges loaded, larger charges offer no benefit over smaller charges (and with their larger volume, allow fewer charges to be loaded at once), and so only the smallest available charge should be used.
The size of charges used and the rate at which they are consumed is based on the size of the module. Larger ancillary armor repairers hold more paste, but consume more paste per cycle, and larger ancillary shield boosters require larger cap charges to be loaded. While ancillary shield boosters may have multiple different sizes of charges loaded, larger charges offer no benefit over smaller charges (and with their larger volume, allow fewer charges to be loaded at once), and so only the smallest available charge should be used.
Line 52: Line 56:
Because [[Overheating]] repair modules increases both the cycle speed and the amount of hitpoints repaired, ancillary repair modules should always be run overheated to maximize the value of their limited cycles. (The overheat damage sustained can then be repaired while the modules are reloading.)
Because [[Overheating]] repair modules increases both the cycle speed and the amount of hitpoints repaired, ancillary repair modules should always be run overheated to maximize the value of their limited cycles. (The overheat damage sustained can then be repaired while the modules are reloading.)


===Resists===
Another module often important to a burst active tank is the capacitor booster. A cap booster uses charges to fire more energy into your capacitor, allowing a ship to exceed its normal power output for a limited time. Ancillary repairers/boosters and cap boosters offer some protection against capacitor warfare, and a burst active tank can achieve a startlingly-high rate of restoration, especially on a ship with bonuses like those found on the [[Maelstrom]] or [[Hyperion]].
 
The drawbacks of a burst active tank are that it requires considerable attention from the pilot, takes up a lot of cargo space, and (most importantly) will eventually give out.
 
===Avoid mixing tanks===


Resists on a ship will reduce the damage taken. It is a number that tells you by how large a percentage the incoming damage is reduced. For example 30% thermal resistance on shields means that all incoming thermal damage is reduced by 30%.
Modules are available to help both your shields and your armor, but it is a good rule of thumb to focus on ''either'' shields ''or'' armor, not both.


The T1 ships have almost identical base resist values but many of the T2 ships have so called "[[T2 Resists]]" that drastically vary between races. For example Minmatar ships with T2 resists have massive EM and thermal resists even on shields but have low resists against explosive and kinetic.
Most of the time a tank takes up a substantial proportion of powergrid, CPU and either midslots (shield tank) or lowslots (armor tank). If you fit a shield tank, you can put useful things (damage modules, speed and agility modules &c) in your lowslots, and if you armor tank you can put useful things (tackling modules, electronic warfare modules, propulsion modules &c) in your midslots. Both types of tank at once leave you with little space for other useful modules.


But the base resists of a ship are almost always modified by modules fitted on the ship. Resistance percentages are calculated in a way that many people find confusing. A module may list itself as having a 30% bonus to resistances -- but the only time you'll actually see a 30% increase in resistance when using it is if your current resistance is 0%.  
This rule also applies to mixing buffer tank with active tank. Buffer and active tank modules both require heavy powergrid and CPU, both consume the same limited set of slots, and both fitting theories satisfy different, usually mutually exclusive, goals and conditions.


The way the calculations work is that the percentage is applied to the remaining damage after resists. If things didn't work this way, you'd easily get resistances above 100%, and shooting you would cause armor to grow on your ship.  
Double-tanked ships are usually only used as specially-designed bait.


Resistances are easier to figure out if you think in damage vulnerability rather than damage resistance. A ship with 60% EM resist is then 40% EM damage received. Adding a 30% resist module multiplies the damage taken by 0.7 so you now take 0.7*0.4 = 0.28 = 28% of the raw damage.
===Resistances===


Because of [[stacking penalties]], and the way resistances multiply together, it is not possible to be 100% resistant to a damage type<ref name="100%resist">It is possible to have over 100% resist by overheating a deadspace hardener on a [[Deep Space Transport]] in a red giant wormhole system. This will result in '''immediate destruction''' of the ship if any damage is taken so don't do it.</ref>. The final resist with multiple modules and stacking penalties can be calculated with formula<br>
Resistances (or "resists) on a ship reduce the damage taken. A resist figure is number that tells you by how large a percentage the incoming damage is reduced. For example, 30% thermal resistance on shields means that all incoming thermal damage is reduced by 30%: 100 hit points of shield damage becomes 70.
 
The T1 ships have almost identical base resists, but many of the T2 ships have so called "[[T2 Resists]]" that drastically vary between races. For example, Minmatar ships with T2 resists have massive EM and thermal resists even on shields, but have low resists against explosive and kinetic.
 
The base resists of a ship are almost always modified by modules fitted on the ship. Resistance percentages are calculated in a way that many people find confusing. A module may list itself as having a 30% bonus to resistances, but the only time you'll actually see a 30% increase in resistance when using it is if your current resistance is 0%.
 
The way the calculations work is that the percentage is applied to the remaining damage after resists. If things didn't work this way, you'd easily get resistances above 100%, and shooting you would cause armor or shields to grow on your ship.
 
Resistances are easier to figure out if you think in terms of "damage vulnerability" rather than "damage resistance". A ship with 60% EM resist is then going to take 40% EM damage received. Adding a 30% resist module multiplies the damage taken by 0.7, so you now take 0.7*0.4 = 0.28 = 28% of the raw damage.
 
Because of [[stacking penalties]], and the way resistances multiply together, it is not possible to be 100% resistant to a damage type<ref name="100%resist">It ''is'' possible to have over 100% resist by overheating a deadspace hardener on a [[Deep Space Transport]] in a red giant wormhole system. This will result in '''immediate destruction''' of the ship if any damage is taken—so don't do it.</ref>.
 
For those interested in the math (pilots do not need to know these details if they don't want to), the final resist with multiple modules and stacking penalties can be calculated with the formula<br>


:<math> \text{Resist} = 1 - ( 1 - R_0 )( 1 - R_1)( 1-R_2 \times 0.869)( 1 - R_3 \times 0.571)( 1 - R_4 \times 0.283)...</math>
:<math> \text{Resist} = 1 - ( 1 - R_0 )( 1 - R_1)( 1-R_2 \times 0.869)( 1 - R_3 \times 0.571)( 1 - R_4 \times 0.283)...</math>
Line 70: Line 90:
where R0 is the hull resist and R1, R2, R3,... are module resists in descending order.
where R0 is the hull resist and R1, R2, R3,... are module resists in descending order.


It's often more sensible to increase the resistances of your ship than to increase the total number of raw HP. The damage reduction of resistance modules is a constant where as the buffer reduces with each attack. The fitting requirements for resistance modules are often less than the fitting requirements for Shield Extenders and armor plates. The one drawback is [[Stacking_penalties|stacking penalties]] that will inhibit the effectiveness of additional resistance modules but do not apply to Shield Extenders.
===Negative resistances===
 
Certain effects will apply negative resists to a ship. These include [[incursion]] effects, [[Abyssal Deadspace]] effects and [[Capital_Ship_Modules#Phenomena_Generator|phenomena generators]]. The way these are applied may seem confusing, but they are simpler than they seem. The idea is exactly same as with normal resists explained above where the percentage change is applied to vulnerability (100% - resist) instead of resist.
====Negative resists====
Certain effects will apply negative resists to a ship. These include [[incursion]] effects, [[Abyssal Deadspace]] effects and [[Capital_Ship_Modules#Phenomena_Generator|phenomena generators]]. The way these are applied may seem confusing but they are simpler than they seem. The idea is exactly same as with normal resists explained above where the percentage change is applied to vulnerability (100% - resist) instead of resist.


A 50% resist penalty means that your ship will take 50% more damage.
A 50% resist penalty means that your ship will take 50% more damage.


Example: You fly your ship with 70% resist into a situation where you receive 50% resist penalty. Your new resist is 55%, how can this make any sense? <br>
Example: You fly your ship with 70% resist into a situation where you receive 50% resist penalty. Your new resist is 55%; how can this make any sense? <br>
Your ship has 70% resistance meaning you will receive 30% of the incoming damage. If 50% resist penalty is applied on your ship you will take 50% more damage. You will be receiving 1.5×30% = 45% damage after your resists. So the new resistance is 100% - 45% = 55%.
Your ship has 70% resistance meaning you will receive 30% of the incoming damage. If 50% resist penalty is applied on your ship you will take 50% more damage. You will be receiving 1.5×30% = 45% damage after your resists. So the new resistance is 100% - 45% = 55%.


Line 84: Line 102:
:<math> \text{New resist} = 1 - ( 1 - \text{Original resist} ) \times ( 1 + \text{Penalty} ) </math>
:<math> \text{New resist} = 1 - ( 1 - \text{Original resist} ) \times ( 1 + \text{Penalty} ) </math>


The resist penalties will never cause the ship to have below 0% resist. If the penalty is big enough that the new resist would be negative the new resist will simply be 0%.
The resist penalties will never cause the ship to have below 0% resist. If the penalty is big enough that the new resist would be negative, the new resist will simply be 0%.


==Armor tanking==
==Armor tanking==