More actions
Add distribution pattern for Oceanic |
Move resource distribution patterns to the middle of each planet section |
||
| Line 19: | Line 19: | ||
[[File:BarrenLarge.png|right|Barren Planet]]Barren planets are archetypical "dead terrestrials": dry, rocky worlds with a minimal atmosphere and an unremarkable composition. They are commonly etched with flood channels, which are often broad enough to be visible from orbit; most such worlds have accumulated significant quantities of ice over their lifetimes, but cannot retain it on their surface. Generally surface liquid evaporates rapidly, contributing to the thin atmosphere, but occasionally it will seep back into the ground and refreeze, ready for another breakout in future when the local temperature rises. | [[File:BarrenLarge.png|right|Barren Planet]]Barren planets are archetypical "dead terrestrials": dry, rocky worlds with a minimal atmosphere and an unremarkable composition. They are commonly etched with flood channels, which are often broad enough to be visible from orbit; most such worlds have accumulated significant quantities of ice over their lifetimes, but cannot retain it on their surface. Generally surface liquid evaporates rapidly, contributing to the thin atmosphere, but occasionally it will seep back into the ground and refreeze, ready for another breakout in future when the local temperature rises. | ||
'''Resources''' | '''Resources''' | ||
| Line 27: | Line 28: | ||
* Noble Metals | * Noble Metals | ||
'''Single Planet Products''' | Barren planets have three resources with little to no pattern in their distribution, and two with a more consistent record. Aqueous Liquids tend to be gathered near the poles in moderate to poor quantity, while Micro Organisms tend to cluster here and there in the "temperate" band (in Earth speak) | ||
'''Available Single Planet Products''' | |||
* '''<font color=green>Biocells</font>''' | * '''<font color=green>Biocells</font>''' | ||
* Mechanical Parts | * Mechanical Parts | ||
| Line 34: | Line 38: | ||
* Water-Cooled CPU | * Water-Cooled CPU | ||
* '''<font color=green>Transcranial Microcontrollers</font>''' (P3) | * '''<font color=green>Transcranial Microcontrollers</font>''' (P3) | ||
| Line 41: | Line 43: | ||
[[File:GasLarge.png|right|Gas Planet]]Gas planets are characterized by a deep, opaque upper atmosphere, usually composed primarily of light elements such as hydrogen or helium. Simple chemicals can add a range of hues and shades in the visual spectrum, and the interaction between upwellings and rapidly circulating pressure bands result in a huge variety of visible surface structures. A similar level of diversity can be found beneath the cloud-tops: the inner composition of a given gas planet might belong to any one of a dozen broad groups, with no two planets entirely alike in this regard. | [[File:GasLarge.png|right|Gas Planet]]Gas planets are characterized by a deep, opaque upper atmosphere, usually composed primarily of light elements such as hydrogen or helium. Simple chemicals can add a range of hues and shades in the visual spectrum, and the interaction between upwellings and rapidly circulating pressure bands result in a huge variety of visible surface structures. A similar level of diversity can be found beneath the cloud-tops: the inner composition of a given gas planet might belong to any one of a dozen broad groups, with no two planets entirely alike in this regard. | ||
'''Resources''' | '''Resources''' | ||
| Line 48: | Line 51: | ||
* Noble Gas | * Noble Gas | ||
* '''<font color=green>Reactive Gas</font> (unique)''' | * '''<font color=green>Reactive Gas</font> (unique)''' | ||
Resources on a Gas planet will typically be found in narrow bands running east-west at various latitudes. Base metals are generally in bands around the equator, Aqueous Liquids and Ionic Solutions in mid-latitudes bands, with the Noble Gas near the poles. Reactive Gas will be found in small pockets at all latitudes. Gas planets are normally larger than most other types of planets, so connecting links between structures will generally take more power grid and CPU. | |||
'''Single Planet Products''' | '''Single Planet Products''' | ||
| Line 55: | Line 61: | ||
* Water-Cooled CPU | * Water-Cooled CPU | ||
* '''<font color=green>Condensates</font>''' (P3) | * '''<font color=green>Condensates</font>''' (P3) | ||
| Line 62: | Line 66: | ||
[[File:IceLarge.png|right|Ice Planet]]The majority of icy planets went through a period of being barren terrestrials, before being surfaced with ice over the course of many millennia. The exact process for this varies from case to case, but the end result is both common and visually uniform - a bright, reflective planet scored by countless fractures and crevasses. A few icy planets are hypothesized to have been warmer, liquid-bearing planets in the past that have subsequently frozen, as a result of either stellar cooling or failed terraforming projects. | [[File:IceLarge.png|right|Ice Planet]]The majority of icy planets went through a period of being barren terrestrials, before being surfaced with ice over the course of many millennia. The exact process for this varies from case to case, but the end result is both common and visually uniform - a bright, reflective planet scored by countless fractures and crevasses. A few icy planets are hypothesized to have been warmer, liquid-bearing planets in the past that have subsequently frozen, as a result of either stellar cooling or failed terraforming projects. | ||
'''Resources''' | '''Resources''' | ||
| Line 69: | Line 74: | ||
* Noble Gas | * Noble Gas | ||
* Planktic Colonies | * Planktic Colonies | ||
Ice planets typically have high amounts of Heavy Metals and Aqueous Liquids available. Micro Organisms and Noble Gas are less abundant, with Planktic Colonies being somewhat thin. Aqueous Liquids tends to be found more in the polar regions of Ice planets, Planktic Colonies in the temperate latitudes and Micro Organisms in the equatorial regions. Noble Gas and Heavy Metals are more randomly distributed with Heavy Metals more towards the equator and Noble Gas more towards the poles but with large areas of overlap and intermingling. | |||
'''Single Planet Products''' | '''Single Planet Products''' | ||
| Line 75: | Line 83: | ||
* Viral Agent | * Viral Agent | ||
* '''<font color=green>Synthetic Synapses</font>''' (P3) | * '''<font color=green>Synthetic Synapses</font>''' (P3) | ||
| Line 82: | Line 88: | ||
[[File:LavaLarge.png|right|Lava Planet]]So-called "lava planets" (properly "magmatic planets") fall into one of three groups: solar magmatics, which orbit sufficiently close to their star that the surface never cools enough to solidify; gravitational magmatics, which experience gravitational shifts sufficiently strong to regularly and significantly fracture cooling crusts; and magmatoids, which are for largely-unexplained reasons simply incapable of cooling and forming a persistent crust. All three types generally exhibit the same external phenomena - huge red-orange lava fields being a defining feature - but the latter two types are sometimes capable of briefly solidifying for a period measured in years or perhaps decades. | [[File:LavaLarge.png|right|Lava Planet]]So-called "lava planets" (properly "magmatic planets") fall into one of three groups: solar magmatics, which orbit sufficiently close to their star that the surface never cools enough to solidify; gravitational magmatics, which experience gravitational shifts sufficiently strong to regularly and significantly fracture cooling crusts; and magmatoids, which are for largely-unexplained reasons simply incapable of cooling and forming a persistent crust. All three types generally exhibit the same external phenomena - huge red-orange lava fields being a defining feature - but the latter two types are sometimes capable of briefly solidifying for a period measured in years or perhaps decades. | ||
'''Resources''' | '''Resources''' | ||
| Line 89: | Line 96: | ||
* Non-CS Crystals | * Non-CS Crystals | ||
* Suspended Plasma | * Suspended Plasma | ||
Resources on Lava planets do not appear to follow any pattern trends and are scattered all over. You'd think the planet was all liquidy and floaty and stuff. | |||
'''Single Planet Products''' | '''Single Planet Products''' | ||
| Line 96: | Line 106: | ||
* Transmitter | * Transmitter | ||
* '''<font color=green>Smartfab Units</font>''' (P3) | * '''<font color=green>Smartfab Units</font>''' (P3) | ||
| Line 103: | Line 111: | ||
[[File:OceanicLarge.png|right|Oceanic Planet]]Oceanic worlds are a class of terrestrial world covered entirely by liquids, usually in the form of mundane water. While the liquid surface is exceptionally smooth, the ocean floor on most worlds of this type exhibits significant topographic variety. It is this subsurface irregularity which causes the formation of complex weather systems, which would otherwise revert to more uniform patterns. | [[File:OceanicLarge.png|right|Oceanic Planet]]Oceanic worlds are a class of terrestrial world covered entirely by liquids, usually in the form of mundane water. While the liquid surface is exceptionally smooth, the ocean floor on most worlds of this type exhibits significant topographic variety. It is this subsurface irregularity which causes the formation of complex weather systems, which would otherwise revert to more uniform patterns. | ||
'''Resources''' | '''Resources''' | ||
| Line 110: | Line 119: | ||
* Micro Organisms | * Micro Organisms | ||
* Planktic Colonies | * Planktic Colonies | ||
Aqueous Liquids are obviously easy to find on Oceanic planets, likely increasing in intensity where depth is greater. Such focus points in abundance generally match peaks of Complex Organisms, while Micro Organisms are found in shallower water together with Carbon Compounds. Planktic Colonies, found only on Oceanic and Ice planets, float in bands around the temperate zone. | |||
'''Single Planet Products''' | '''Single Planet Products''' | ||
| Line 119: | Line 131: | ||
* '''<font color=green>Vaccines</font>''' (P3) | * '''<font color=green>Vaccines</font>''' (P3) | ||
== Plasma == | == Plasma == | ||
[[File:PlasmaLarge.png|right|Plasma Planet]]The aptly-named "plasma planets" have captured the imagination of countless artists and inspired innumerable works, yet the physics behind them are surprisingly mundane by cosmological standards. A rocky terrestrial with the right kind of atmosphere and magnetic field will, when bombarded with solar radiation, generate sprawling plasma storms as specific atmospheric elements are stripped of their electrons. Over time these storms will generally scorch the surface rock black, adding to the visual impact. | [[File:PlasmaLarge.png|right|Plasma Planet]]The aptly-named "plasma planets" have captured the imagination of countless artists and inspired innumerable works, yet the physics behind them are surprisingly mundane by cosmological standards. A rocky terrestrial with the right kind of atmosphere and magnetic field will, when bombarded with solar radiation, generate sprawling plasma storms as specific atmospheric elements are stripped of their electrons. Over time these storms will generally scorch the surface rock black, adding to the visual impact. | ||
'''Resources''' | '''Resources''' | ||
| Line 131: | Line 143: | ||
* Non-CS Crystals | * Non-CS Crystals | ||
* Suspended Plasma | * Suspended Plasma | ||
Resource distribution on Plasma planets generally follow the pattern of the whitish plasma "storms" visible on the surface. Base and Heavy Metals tend to be found in the darker spots on the planet, while Noble Metals and Suspended Plasma are found in the actively boiling areas. Non-CS Crystals are found mostly in the polar band, excepting the pole itself. | |||
'''Single Planet Products''' | '''Single Planet Products''' | ||
| Line 140: | Line 155: | ||
* '''<font color=green>Robotics</font>''' (P3) | * '''<font color=green>Robotics</font>''' (P3) | ||
== Storm == | == Storm == | ||
| Line 146: | Line 160: | ||
[[File:StormLarge.png|right|Storm Planet]] | [[File:StormLarge.png|right|Storm Planet]] | ||
Storm worlds are usually considered terrestrial planets, although to a casual eye they may appear more similar to gas planets, given their opaque, high-pressure atmospheres. Geomorphically, however, the distinctions are clear: compared to a gas world, the atmosphere of a storm world is usually considerably shallower, and generally composed primarily of more complex chemicals, while the majority of the planet's mass is a rocky terrestrial ball. Their name is derived from the continent-scale electrical storms that invariably flash through their upper atmospheres. | Storm worlds are usually considered terrestrial planets, although to a casual eye they may appear more similar to gas planets, given their opaque, high-pressure atmospheres. Geomorphically, however, the distinctions are clear: compared to a gas world, the atmosphere of a storm world is usually considerably shallower, and generally composed primarily of more complex chemicals, while the majority of the planet's mass is a rocky terrestrial ball. Their name is derived from the continent-scale electrical storms that invariably flash through their upper atmospheres. | ||
'''Resources''' | '''Resources''' | ||
| Line 153: | Line 168: | ||
* Noble Gas | * Noble Gas | ||
* Suspended Plasma | * Suspended Plasma | ||
Storm planets tend to have equal amounts of Aqueous Liquids, Base Metals and Suspended Plasma in decent amounts, with Noble Gas running a close 4th and Ionic Solutions as a distant 5th and somewhat sparse. Ionic Solutions tend to be distributed in the middle latitudes, Noble Gas anywhere but the equator and Suspended Plasma tending towards the equatorial regions. Aqueous Liquids and Base Metals will appear on broad swaths across all latitudes in giant swirling patterns. | |||
'''Single Planet Products''' | '''Single Planet Products''' | ||
| Line 161: | Line 179: | ||
* Water-Cooled CPU | * Water-Cooled CPU | ||
* '''<font color=green>Ukomi Super Conductors</font>''' (P3) | * '''<font color=green>Ukomi Super Conductors</font>''' (P3) | ||
| Line 168: | Line 184: | ||
[[File:TemperateLarge.png|right|Temperate Planet]]Life-bearing worlds are often referred to as "temperate", as their mild temperatures are one of their defining features. Planets with existing, stable ecosystems are prime targets for colonization efforts as they are generally easier to make fully habitable; as a result, the majority of highly populated worlds are of this type. Indeed, it is not altogether uncommon for detailed surveys to reveal signs of previous settlements from various stages of [[New_Eden|New Eden]]'s history. | [[File:TemperateLarge.png|right|Temperate Planet]]Life-bearing worlds are often referred to as "temperate", as their mild temperatures are one of their defining features. Planets with existing, stable ecosystems are prime targets for colonization efforts as they are generally easier to make fully habitable; as a result, the majority of highly populated worlds are of this type. Indeed, it is not altogether uncommon for detailed surveys to reveal signs of previous settlements from various stages of [[New_Eden|New Eden]]'s history. | ||
'''Resources''' | '''Resources''' | ||
| Line 175: | Line 192: | ||
* Complex Organisms | * Complex Organisms | ||
* Micro Organisms | * Micro Organisms | ||
The physical appearance of these planets also has a high impact upon the resources available. Temperate planets with large amounts of water coverage will have an increased supply of Aqueous Liquids whilst having a reduced supply of Complex Organisms and Micro Organisms, planets with large amounts of land mass coverage show an increase in the supply of Micro Organism (and occasionally Complex Organisms), and a significantly reduced amount of Aqueous Liquids. | |||
'''Single Planet Products''' | '''Single Planet Products''' | ||
| Line 182: | Line 202: | ||
* Water | * Water | ||
* '''<font color=green>Industrial Explosives</font>''' (P3) | * '''<font color=green>Industrial Explosives</font>''' (P3) | ||
| Line 193: | Line 211: | ||
*None | *None | ||
=Resource Distribution by Planet Type= | |||
= Resource Distribution by Planet Type = | |||
{| width="100%" border="1" cellspacing="2" cellpadding="2" style="color: black" | {| width="100%" border="1" cellspacing="2" cellpadding="2" style="color: black" | ||
| Line 230: | Line 249: | ||
The fields in the above table highlighted in green are uniquely produced on that planet type. | The fields in the above table highlighted in green are uniquely produced on that planet type. | ||
= Distribution of planet types = | = Distribution of planet types = | ||
| Line 310: | Line 330: | ||
== Choosing a Good Planet == | == Choosing a Good Planet == | ||
For more details, see [[Good Planets]]. | ''For more details, see [[Good Planets]].'' | ||
A "good" planet depends on what you are trying to accomplish. If you are trying to make a full P2 product from the resources all on one planet, then you need to select one with an appropriate balance between the resources, enough resources to keep your factories running with few missed cycles, etc. If you are trying to just strip mine for the one resource that is unique to this planet or that you production chain is missing, then you want one with the maximum possible of that particular resource. Another factor is the security status of the system: the lower the security status, generally the higher the abundance of all the resources. This is discussed in more detail on the [[Good Planets]] page. | A "good" planet depends on what you are trying to accomplish. If you are trying to make a full P2 product from the resources all on one planet, then you need to select one with an appropriate balance between the resources, enough resources to keep your factories running with few missed cycles, etc. If you are trying to just strip mine for the one resource that is unique to this planet or that you production chain is missing, then you want one with the maximum possible of that particular resource. Another factor is the security status of the system: the lower the security status, generally the higher the abundance of all the resources. This is discussed in more detail on the [[Good Planets]] page. | ||
= Planets near Aldrat = | = Planets near Aldrat = | ||