Planetary Commodities are the resources and products of Planetary Industry. There are several tiers available with the end-products becoming larger and more complicated each tier.
Inspiration drawn from https://spreadsheets.google.com/ccc?key=0ArlHEr5t26lndDN3QVhBODJ3YnF5MWVMcUQ0bHdxQXc&hl=en
Potential todo: Sort tables by the combination result?
Tier 1 - Basic Commodities (P1)
Planetary Resources (P0) can be processed into Basic Commodities (P1) in Basic Industry Facilities. See the Planet page for more information on Resources. Planets listed are where the Resource can be found and thus which planets can create the appropriate P1 component without importing anything.
Planets |
Resource |
P1 result |
Immediate Uses |
Component in
|
|
Aqueous Liquids |
Water |
None known |
Coolant, Sterile Conduits, Super Conductors, Test Cultures, Water-Cooled CPU |
|
|
Autotrophs |
Industrial Fibers |
None known |
Microfiber Shielding, Polyaramids, Polytextiles |
|
|
Base Metals |
Reactive Metals |
None known |
Construction Blocks, Mechanical Parts, Nanites, Nano-Factory, Water-Cooled CPU |
|
|
Carbon Compounds |
Biofuels |
None known |
Biocells, Livestock, Polytextiles |
|
|
Complex Organisms |
Proteins |
None known |
Fertilizer, Lifestock, Genetically Enhanced Livestock |
|
|
Felsic Magma |
Silicon |
None known |
Microfiber Shielding, Miniature Electronics, Silicate Glass |
|
|
Heavy Metals |
Toxic Metals |
None known |
Construction Blocks, Consumer Electronics, Enriched Uranium |
|
|
Ionic Solutions |
Electrolytes |
None known |
Coolant, Rocket Fuel, Synthetic Oil |
|
|
Micro Organisms |
Bacteria |
None known |
Fertilizer, Nanites, Organic Mortar Applicators, Test Cultures, Viral Agent |
|
|
Noble Gas |
Oxygen |
POS Fuel |
Oxides, Supertensile Plastics, Synthetic Oil |
|
|
Noble Metals |
Precious Metals |
None known |
Biocells, Enriched Uranium, Mechanical Parts |
|
|
Non-CS Crystals |
Chiral Structures |
None known |
Consumer Electronics, Miniature Electronics, Transmitter |
|
|
Planktic Colonies |
Biomass |
None known |
Genetically Enhanced Livestock, Supertensile Plastics, Viral Agent |
|
|
Reactive Gas |
Oxidizing Compound |
None known |
Oxides, Polyaramids, Silicate Glass |
|
|
Suspended Plasma |
Plasmoids |
None known |
Rocket Fuel, Super Conductors, Transmitter |
|
|
3000 x 0.01 m³ |
20 x 0.38 m³ |
|
One processed batch turns 30 m³ of a P0 material into 7.6 m³ of a P1 material, resulting in a reduction to 25% of original volume
Tier 2 - Processed Materials (P2)
Basic Commodities (P1) can be turned into Processed Materials (P2) in Advanced Industry Facilities. It takes two different P1 items to create one P2 item.
Planets |
Input 1: P1 |
Input 2: P1 |
P2 result |
Immediate Uses |
Component in
|
|
Precious Metals |
Biofuels |
Biocells |
None known |
? |
|
|
Toxic Metals |
Reactive Metals |
Construction Blocks |
None known |
? |
|
|
Chiral Structures |
Toxic Metals |
Consumer Electronics |
None known |
? |
|
|
Water |
Electrolytes |
Coolant |
POS Fuel |
? |
|
|
Toxic Metals |
Precious Metals |
Enriched Uranium |
POS Fuel |
? |
|
|
Proteins |
Bacteria |
Fertilizer |
None known |
? |
|
|
Biomass |
Proteins |
Gen. Enhanced Livestock |
None known |
? |
|
|
Biofuels |
Proteins |
Livestock |
None known |
? |
|
|
Precious Metals |
Reactive Metals |
Mechanical Parts |
POS Fuel |
? |
|
+ |
Silicon |
Industrial Fibers |
Microfiber Shielding |
None known |
? |
|
|
Silicon |
Chiral Structures |
Miniature Electronics |
None known |
? |
|
|
Reactive Metals |
Bacteria |
Nanites |
None known |
? |
|
|
Oxygen |
Oxidizing Compound |
Oxides |
None known |
? |
|
+ |
Industrial Fibers |
Oxidizing Compound |
Polyaramids |
None known |
? |
|
|
Industrial Fibers |
Biofuels |
Polytextiles |
None known |
? |
|
|
Electrolytes |
Plasmoids |
Rocket Fuel |
None known |
? |
|
+ |
Silicon |
Oxidizing Compound |
Silicate Glass |
None known |
? |
|
|
Water |
Plasmoids |
Super Conductors |
None known |
? |
|
|
Biomass |
Oxygen |
Supertensile Plastics |
None known |
? |
|
|
Oxygen |
Electrolytes |
Synthetic Oil |
None known |
? |
|
|
Water |
Bacteria |
Test Cultures |
None known |
? |
|
|
Chiral Structures |
Plasmoids |
Transmitter |
None known |
? |
|
|
Biomass |
Bacteria |
Viral Agent |
None known |
? |
|
|
Water |
Reactive Metals |
Water-Cooled CPU |
None known |
? |
|
|
40 x 0.38 m³ |
40 x 0.38 m³ |
5 x 1.5 m³ |
|
One processed batch turns a combined 30.4 m³ of two P1 materials into 7.5 m³ of a P2 material, again resulting in reduction to approximately 25% of original volume
Tier 3 - Refined Commodities (P3)
It takes two or three different Processed Materials (P2) to create Refined Commodities (P3) in Advanced Industry Facilities
Planets |
Input 1: P2 |
Input 2: P2 |
Input 3: P2 |
P3 result |
Immediate Uses |
Component in
|
|
Nanites |
Livestock |
Construction Blocks |
Biotech Research Reports |
None known |
Wetware Mainframe |
|
|
Silicate glass |
Rocket Fuel |
- |
Camera Drones |
None known |
Self-Harmonizing Power Core |
|
|
Oxides |
Coolant |
- |
Condensates |
None known |
Organic Mortar Applicators |
|
|
Test Cultures |
Synthetic Oil |
Fertilizer |
Cryoprotectant Solution |
None known |
Wetwair Mainframe |
|
|
Supertensile Plastics |
Microfiber Shielding |
- |
Data Chips |
None known |
Broadcast Node |
|
|
Oxides |
Biocells |
Superconductors |
Gel-Matrix Biopaste |
None known |
Integrity Response Drones |
|
|
Water-Cooled CPU |
Transmitter |
- |
Guidance systems |
None known |
Recursive Computing Module |
|
|
Polytextiles |
Viral Agent |
Transmitter |
Hazmat Detection Systems |
None known |
Integrity Response Drones |
|
|
Polyaramids |
Genetically Enchanced Livestock |
- |
Hermetic Membranes |
None known |
Self-Harmonizing Power Core |
|
|
Polyaramids |
Transmitter |
- |
High-Tech Transmitters |
None known |
Broadcast Node |
|
|
Fertilizer |
Polytextiles |
- |
Industrial Explosives |
None known |
Nano Factory |
|
|
Biocells |
Silicate Glass |
- |
Neocoms |
None known |
Broadcast Node |
|
|
Microfiber Shielding |
Enriched Uranium |
- |
Nuclear Reactors |
None known |
Self-Harmonizing Power Core |
|
|
Supertensile Plastics |
Mechanical Parts |
Miniature electronics |
Planetary Vehicles |
None known |
Integrity Response Drones |
|
|
Mechanical Parts |
Consumer Electronics |
N/A |
Robotics |
POS Fuel |
Organic Mortar Applicators |
|
|
Construction Blocks |
Miniature Electronics |
- |
Smartfab Units |
None known |
Shield Conduits |
|
|
Water-Cooled CPU |
Coolant |
Consumer Electronics |
Supercomputers |
None known |
Wetwair Mainframe |
|
|
Supertensile Plastics |
Test Cultures |
- |
Synthetic Synapses |
None known |
Recursive Computing Module |
|
|
Biocells |
Nanites |
- |
Transcranial Microcontrollers |
None known |
Recursive Computing Module |
|
|
Synthetic Oil |
Superconductors |
- |
Ukomi Super Conductors |
None known |
Nano-Factory |
|
|
Livestock |
Viral Agent |
- |
Vaccines |
None known |
Sterile Conduits |
|
|
10 x 1.5 m³ |
10 x 1.5 m³ |
10 x 1.5 m³ |
3 x 6 m³ |
|
One processed batch turns a combined 30 or 45 m³ of two or three P2 materials into 18 m³ of a P3 material, with volume reduction now only to 40% or 60%
Tier 4 - Advanced Commodities (P4)
Advanced Commodities (P4) are created in High Tech Production Plants and take either three Refined Commodities (P3) each or two P3s and one P1.
Planets |
Input 1: P3 |
Input 2: P3 |
Input 3: P1/3 |
P4 result |
Immediate Uses |
Component in
|
|
Neocoms |
Data Chips |
High-Tech Transmitters |
Broadcast Node |
None known |
? |
|
|
Gel-Matrix Biopaste |
Hazmat Detection Systems |
Planetary Vehicles |
Integrity Response Drones |
None known |
? |
|
|
Industrial Explosives |
Ukomi Super Conductors |
Reactive Metals |
Nano-Factory |
None known |
? |
|
|
6 x 6 m³ |
6 x 6 m³ |
6 x 6 m³ or 40 x 0.38 m³ |
1 x 100 m³ |
|
One processed batch turns a combined 108 or 87.2 m³ of three P3 materials or two P3s + one P1 into one 100 m³ P4 item, making volume reduction insignificant at this point, or in the odd case when a P1 material is involved, actually increases the volume beyond the components! Yes, somebody appears to have allowed that guy talking about Perpetual Motion Devices to touch the P4 production chain.