More actions
Salartarium (talk | contribs) m proofreading |
Salartarium (talk | contribs) m conform headings to MoS |
||
| Line 3: | Line 3: | ||
It is important to note that radial, transversal, and angular velocity are the same for both you and an object. For example, if you have a transversal velocity of 500 m/s with respect to another player's ship, then he also has a 500 m/s transversal velocity to your ship. | It is important to note that radial, transversal, and angular velocity are the same for both you and an object. For example, if you have a transversal velocity of 500 m/s with respect to another player's ship, then he also has a 500 m/s transversal velocity to your ship. | ||
== Radial | == Radial velocity == | ||
Radial velocity describes in EVE the speed at which the distance between you and the object changes. If the distance between you and the object increases, then the value is positive. If the distance between you and the object decreases, then the value is negative. In other words, as you move toward the object, both you and it have a negative radial velocity. | Radial velocity describes in EVE the speed at which the distance between you and the object changes. If the distance between you and the object increases, then the value is positive. If the distance between you and the object decreases, then the value is negative. In other words, as you move toward the object, both you and it have a negative radial velocity. | ||
| Line 9: | Line 9: | ||
Just to provide another explanation, consider a sphere centered at your ship so that the object is on the surface of the sphere. As you and the object move around, the sphere follows you and also adjusts its size. The speed at which the sphere's size changes is determined by its radius, hence the term "radial" velocity. | Just to provide another explanation, consider a sphere centered at your ship so that the object is on the surface of the sphere. As you and the object move around, the sphere follows you and also adjusts its size. The speed at which the sphere's size changes is determined by its radius, hence the term "radial" velocity. | ||
== Transversal | == Transversal velocity == | ||
Transversal velocity in EVE describes the speed at which an object moves perpendicular to you, i.e. its orbital velocity. In other words, it is a metric used to describe the sideways movement of you and an object relative to one another. To get a sense of what this means, below is a list of some examples. | Transversal velocity in EVE describes the speed at which an object moves perpendicular to you, i.e. its orbital velocity. In other words, it is a metric used to describe the sideways movement of you and an object relative to one another. To get a sense of what this means, below is a list of some examples. | ||
| Line 30: | Line 30: | ||
This differs from angular velocity (below) in that it is not affected by the distance between both objects. | This differs from angular velocity (below) in that it is not affected by the distance between both objects. | ||
== Angular | == Angular velocity == | ||
Angular velocity describes in EVE the speed at which you and an object rotate around each other. It is measured in radians per second, with π (3.14) radians equal to 180 degrees. For example, if you have an angular velocity at 6.283 rad/sec, then you are orbiting a full circle every second (since 6.283 = 2 * PI). Angular velocity has a very important relationship with transversal velocity. | Angular velocity describes in EVE the speed at which you and an object rotate around each other. It is measured in radians per second, with π (3.14) radians equal to 180 degrees. For example, if you have an angular velocity at 6.283 rad/sec, then you are orbiting a full circle every second (since 6.283 = 2 * PI). Angular velocity has a very important relationship with transversal velocity. | ||
| Line 38: | Line 38: | ||
People often debate between using either transversal or angular velocity in an overview setup. Both variables display similar information; however, angular velocity is much more useful in practice, due to its use in turret to-hit calculations. It essentially allows for an easy comparison between your (or your opponent's) turret's tracking speed and the angular velocity. If the angular velocity is greater than the turret's tracking speed, you'll have a low chance to hit, but having a smaller angular velocity than the turret's tracking speed means maximizing the hit chance. If angular velocity equals tracking speed the chance to hit is 50% and damage is approximately 40%. | People often debate between using either transversal or angular velocity in an overview setup. Both variables display similar information; however, angular velocity is much more useful in practice, due to its use in turret to-hit calculations. It essentially allows for an easy comparison between your (or your opponent's) turret's tracking speed and the angular velocity. If the angular velocity is greater than the turret's tracking speed, you'll have a low chance to hit, but having a smaller angular velocity than the turret's tracking speed means maximizing the hit chance. If angular velocity equals tracking speed the chance to hit is 50% and damage is approximately 40%. | ||
== Practical | == Practical meaning == | ||
Due to the mechanics of [[Turret Damage]], velocity plays a large role in determining the probability of successfully hitting targets. Knowing how to control your shared velocity variables can be a huge advantage in a fight. For example, the reason that frigates can tackle battleships and survive is due to the relation between the high angular velocity and the battleship's turret's low tracking speeds. Also, the rate at which a ship is closing in on another is determined by its radial velocity. By balancing radial velocity with transversal/angular velocity can help you pull range or close in on a target, while still being able to survive. Next, we'll look at two expanded examples to further explain these concepts and relate them to EVE. | Due to the mechanics of [[Turret Damage]], velocity plays a large role in determining the probability of successfully hitting targets. Knowing how to control your shared velocity variables can be a huge advantage in a fight. For example, the reason that frigates can tackle battleships and survive is due to the relation between the high angular velocity and the battleship's turret's low tracking speeds. Also, the rate at which a ship is closing in on another is determined by its radial velocity. By balancing radial velocity with transversal/angular velocity can help you pull range or close in on a target, while still being able to survive. Next, we'll look at two expanded examples to further explain these concepts and relate them to EVE. | ||