Difference between revisions of "Tanking"

From EVE University Wiki
Jump to: navigation, search
(Complete rework)
Line 1: Line 1:
{{merge|heavy overlap between [[tanking]], [[Shields]] and [[Passive shield tanking]]}}
 
[[Image:402status panel.jpg|right|Ship Status Panel]]
 
{{tocright}}
 
 
'''Tanking''' is the act of fitting a ship with modules in order to improve its defensive capabilities to resist, absorb, or mitigate incoming damage, thus preventing or delaying your ship's destruction.
 
'''Tanking''' is the act of fitting a ship with modules in order to improve its defensive capabilities to resist, absorb, or mitigate incoming damage, thus preventing or delaying your ship's destruction.
  
Damage to your ship is represented by the Ship Status Panel - the three rings on the top of the status panel represent, from outermost to the inner ring, your ship's shield, armor and structure (also called "hull"). As you incur damage, each ring will fill with red coloring, starting with your shields, then your armor, and finally, your structure. When the structure ring is completely red, that means your hull has been breached, and your ship is destroyed - and you'll find yourself floating in space in a pod.  
+
[[file:402status panel.jpg|thumb|450px|right|Ship Status Panel]]
 +
The ammount of hitpoints on your ship is represented by the Ship Status Panel - the three rings on the top of the status panel represent, from outermost to the inner ring: your ship's shield, armor and structure (also called "hull"). As you incur damage, each ring will fill with red coloring, starting with your shields, then your armor, and finally, your structure. When the structure ring is completely red, that means your hull has been breached, and your ship is destroyed - and you'll find yourself floating in space in a pod.
  
There are four principle components to tanking:
+
To avoid finding yourself floating in your pod you need to be able to tank the damage. This is generally achieved through three ways:
* Maximizing hit points
+
* Increase ship raw HP. Generally known as buffer tanking.
* Resisting incoming damage
+
* Repair damage received. Known as active tanking. Passive shield tanking is a special case.
* Repairing or recharging damage taken
+
* Increase damage resists. Used to increase effectiveness of both passive and active tanking.
* Avoiding damage altogether
 
  
== Tanking Types ==
+
== Buffer tanking ==
Common methods used to mitigate damage taken by your ship during a fight:
+
The buffer tank is based around the principle of having high damage resistance and as many hit points as possible, thus increasing the Effective HitPoints (EHP) of the ship. The concept behind this is simple, add enough EHP to your ship to outlast your opponent through the use of active and/or passive resistance modules, which complement the HP increasing modules that add raw hit points.
  
*Armor Tanking: Focuses on maximizing strength and effectiveness of your armor to withstand and/or repair damage. This is the most common type of defense for ships with a greater number of low-slots, where most armor-related modules are fitted.  
+
This type of fitting uses a minimal amount of capacitor to run hardeners making it easily sustainable, but can be made fully passive by using only passive resistance modules instead. The primary drawback to Buffer Tanking is that you have no way to repair yourself, so when you run out of hit points you are toast.
*Shield Tanking: Focuses on maximizing your shields' ability to withstand and/or repair damage. This is the most common type of defense for ships with larger numbers of mid-slots, where most shield modules are fitted.
 
*Hull Tanking: Focuses on reinforcing the structure of your ship to withstand and/or repair damage. Generally, hull tanking is not considered to be very viable, as hull repairers are relatively inefficient.
 
*Spider Tanking: Focuses on a fleet tactic in which ships mount remote armor repair modules so they can repair each other.
 
*Speed Tanking: Focuses on maximizing the velocity of your ship, in order to avoid damage. This approach can be effective for some extremely fast ships, though it requires a highly skilled pilot to execute.
 
*Range Tanking: Focuses on engaging from a distance so that you are out of the range of enemy fire.
 
*Cloak Tanking: Focuses on the use of a cloaking device to avoid being detected, targeted or engaged.
 
*EW Tanking: Focuses on electronic warfare modules to make it difficult for enemies to inflict damage. This approach is generally difficult to execute without the support of other ships and is often used in combination with speed and/or range tanking.
 
  
== The Key to Tanking ==
+
Most common in fleet PvP, but also group PvE with logistic support (like incursions, wormhole anomalies / signatures and a few others). In PvP a fleet will overwhelm an active tank in fairly short order, whereas a buffer tank will give you more survival time. Although, some ships with faction gear and active tank bonuses can field some extremely resistant active tanks that can take on more than you might think.  
*There are two ways to minimise your incoming damage - moving fast and being small.  The smaller and faster you are, the less damage you take from all primary weapon systems (with a couple of exceptions, such as bombs, smartbombs or doomsday devices - these don't care how small or fast you are).
 
*When you fit armor plates and armor rigs, this makes you slower and less agile.
 
*When you fit shield extenders and shield rigs, this makes you bigger.
 
*If you do both, you get slower ''and'' bigger - thus, you take a lot more damage.
 
*To find out ''why'' you take less damage by being small and fast, have a look at the missile and gunnery classes - the equations these weapon systems use to determine how much damage you take depend in part on your velocity and your signature radius. See [[Gunnery 101]].
 
  
== How Armor and Shield Resistances Work  ==
+
The effective hitpoints are product of raw HP and resist. In general if you are expecting to have Logistical support (friends to rep your armor) then you want to buffer tank more towards resistance, because the higher your resistances the more effective logistic reps are. While if you don't expect logistical support you only care about the Effective Hit Points, so whatever combination gives you more effective hit points is the best option.
*Resistance percentages are calculated in a way that many people find confusing. A module may list itself as having a 30% bonus to resistances -- but the only time you'll actually see a 30% increase in resistance when using it is if your current resistance is 0%.
 
*The way the calculations work is that the percentage is applied to the remaining vulnerability. If things didn't work this way, you'd easily get resistances above 100%, and shooting you would cause armor to grow on your ship.
 
*Resistances are easier to figure out if you think in damage vulnerability rather than damage resistance.
 
*Example:  let's say we're flying a Harbinger, and we want to buff up our explosive resistance.  The Harbinger already has a built-in 20% explosive resistance, so we have a 80% vulnerability, and if we get hit by something that does 100 explosive damage, we take 80 damage. Pretty simple.
 
*That's still a lot of damage, so we now fit an Armor Explosive Hardener I, which gives us a 50% resistance bonus (the game lists this as a -50% resistance bonus which is also confusing).  This 50% is applied to the remaining vulnerability, which if you remember is currently 80%.  Half of 80% is 40%, which means this is our new vulnerability, and thus a 60% explosive resistance. If we get hit by that explosive damage missile again that deals 100 damage, now we are taking only 40 damage.
 
*(Now on slide 8) But we want to reduce this even more.  So we fit an Energized Adaptive Nano Membrane II.  This is a super awesome module that gives us an extra -20% resistance to all four damage types.  However we now run into [[Stacking penalties|stacking penalties]], which apply to armor and shield resistance modules and rigs. The second module (that is the module or rig with the second-biggest bonus) that affects a specific damage resistance is only 87% effective, the module with the third-biggest bonus is 57% effective, and it gets less and less effective as you fit more of the same thing.  Because we now have two modules that affect explosive resistance, the smaller bonus (i.e. the -20% from the EANM) is actually only 87% effective, which means it only gives us a 17.4% bonus to armor resistance.  Note that the other EM, thermal and kinetic resistances are unaffected because we only have one resistance bonus for each of them, so those three still give the full 20%.
 
*Remember we had a vulnerability of 40% from the previous slide.  This -17.4% is applied to this 40% vulnerability, which results in a 33% vulnerability, and a 67% explosive resistance.  The missile hitting us for 100 damage now only deals 33 damage to us.
 
*Because of stacking penalties, and the way resistances multiply together, it is not possible to be 100% resistant to a damage type.  The best possible resistance is about 99.3% EM resistance, which is possible on a Loki with officer modules ''(link in chat: http://i.imgur.com/FHaNYk4.png - point out the use of 100% EM incoming damage)'' - if doomsday devices could be used on sub-capital ships, this Loki would survive three strikes.  
 
  
= Armor tanking =
+
== Active tanking==
Armor tanking focuses on maximizing strength and effectiveness of your armor to withstand and/or repair damage.
 
  
== Advantages of Armor Tanking  ==
+
Active tanking is most commonly used for solo activities such as mission/complex running, ratting, and solo PvP. Active tanking differs from buffer tanking in that it uses armor repair or shield booster modules to actively repair damage done to the ship. You should be careful to include enough resistance and buffer to keep your repair modules from being overwhelmed by incoming damage; frequently this means packing resistance modules (either passive or active) that compensate for the specific types of damage you expect to be receiving.
*There are many more modules to choose from when armor tanking than when shield tanking, probably one will fit your specific requirement.  
 
*Active armor tanking modules are more capacitor-efficient than shield tanking modules.
 
*Your midslots are left free for afterburners, tackling modules, and other very useful utility modules.
 
*Some ships have bonuses to armor tanking, and some ships have a large number of low slots and fewer mid slots - these sorts of ships will benefit from being armor tanked.
 
  
== Disadvantages of Armor Tanking  ==
+
This type of fitting takes a lot of capacitor to sustain your cap-hungry repair modules so it should ideally include modules such as cap rechargers, capacitor batteries or capcitor rigs to balance out and maintain capacitor stability.
*Unlike shields, there is no inherent regeneration rate to armor.
 
*When your armor tank fails, you have less of a buffer before your ship is destroyed than a shield tank.
 
*It takes more skill points to mount an effective Tech II armor tank - mostly due to the skill Hull Upgrades 5.
 
*Armor mods occupy low power slots, reducing your ability to fit damage mods.
 
*Although active armor tanking modules are more cap-efficient than shield tanking ones, armor repairers cycle are a lot slower than shield boosters, repairing fewer hitpoints per second.
 
  
== Common Armor Tanking Ships  ==
+
Active Tanking uses energy from the ship's capacitor to run a local repair module. Active tanks are stronger against higher bursts of damage but tend to drain the pilot's capacitor over time resulting in the tank 'breaking' during long engagements and are vulnerable to [[Capacitor Warfare] that drains the ships capacitor dry.
*Because they generally have more low slots, and therefore can fit more armor-tanking modules, Gallente and Amarr ships are usually armor tanked. The Gallente Hyperion and Proteus, and the Amarr Abaddon and Legion, have the strongest sub-capital armor tanks in the game - and can exceed 60,000 hit points in armor protection, and over 200,000 effective hit points in total, with the right skills, modules and implants.
 
*Many Minmatar ships can also be armor tanked, as they typically have a more balanced distribution of low, mid and high slots.
 
*Very few Caldari ships armor tank, with the exception of the Scorpion and Blackbird. These are sometimes (and in the Scorpion's case, usually) armor-tanked so that they can keep as many midslots as possible free for ECM.
 
  
== Armor Tanking Modules  ==
+
Capacitor stability is important because it allows you to leave your Tank modules turned on without ever worrying about running out of capacitor. So long as incoming damage is less than what your repair modules can handle your ship should be able to sustain that level of damage indefinitely. This is commonly referred to as perma-tanking. If incoming damage exceeds your repair capacity you will gradually run out of Hit Points and die. This is commonly referred to as breaking the tank.
  
=== Armor Plates  ===
+
For PvP purposes a cap booster can be used to temporarily supplement capacitor output to allow for short bursts of heavy tanking. The primary drawback to this approach is that unlike the capacitor stable fitting described above, when you run out of charges to run your capacitor booster, you quickly run out of capacitor, your tank will fail and you will die horribly. Cap booster will also offer some safety against [[Capacitor warfare|neuting]] allowing you to keep on cycling modules even when your capacitor disappears in few seconds.
*Armor plates are the simplest armor module; they add a flat amount of armor to a ship. These can be an excellent way of adding buffer to your tank, but the penalties of increased mass make them uncommon in PvE.  
 
*The large amount of mass they add to a ship, reduces agility, so are rarely used on faster ships.
 
*While 1600mm plates are the largest size, they can often be fitted to cruisers, giving a big boost to their EHP.  
 
*Note: the Reinforced Rolled Tungsten plates are the Meta 4 version and are also very popular.  They don't add as much armor HP than the T2 steel plates, but they use significantly less powergrid and add less mass (thus retaining some of your agility).  They can be useful if you're short on PG.
 
  
=== Damage Control  ===
+
Similarly, weapon systems that drain your ship's capacitor will effectively disable your active tanking modules. As above, your tank will fail and you will die horribly. In this case, the capacitor booster can be used on an otherwise capacitor stable fitting to provide emergency power to prevent being drained and destroyed.
*A Damage Control module gives a significant boost to any ship's durability by giving resistance bonuses to armor, shields and hull. This is the only module to increase hull resistances, which makes it very valuable in most ships, as it gives you a larger buffer before your ship is destroyed, buying you more time to escape if necessary.  
 
*It is a passive module, but it is easy to fit and uses very little energy (less energy than the base cap recharge at 0% cap).
 
*These resistance bonuses don't incur [[Stacking penalties|stacking penalties]] with other tanking modules but do with `Armor Resistance Shift Hardener`, only one Damage Control can be active in a ship at a time.
 
*Extremely common in PvP, some snipers or EWAR might choose not to fit them but most will. Less common in PvE but can still be useful for armor tanking PvE.
 
*If you fit only one tanking module to your ship, the DCU is the module to use.
 
  
=== Armor Hardeners  ===
+
Ancillary armor repairers and shield boosters are another way to field strong active tank for a short duration. These modules can be loaded with nanite repair paste and cap boosters. While the module has charges you will be able to tank quite massive damage but once the charges are out your repairing ability quicly disappears.
*Armor Hardeners are active modules that boost one of the four armor resistances: EM, Thermal, Kinetic or Explosive.  
 
*Compared to membranes, they use capacitor (not much though) and slightly more CPU but offer a large boost in effectiveness
 
*Realize that when you are in game the fitting window won't show you an active module's bonus until you actually activate it.  Which means you have to either be in space or enter simulation mode. (Alt-F is the default shortcut combination to open your fitting window).
 
  
=== Reactive Armor Hardener ===
+
==Resists==
*This is a new module introduced in Inferno and you can only fit one.
 
*Uses more capacitor than standard armor hardeners, when you turn it on it gives you -15% extra armor resistance across the board to all resistances.
 
*However it shifts its resistances according to incoming armor damage, moving the resistances gradually per cycle. Example: if you are being hit by only EM damage, the 15% to all resistances will gradually shift to 60% EM resistance and 0% all other resistances The shifting effect is only activated when your shield has gone and you are taking armor damage.
 
*Shifts by 6% per damage type per cycle.  If you're being continually hit by only EM damage, each cycle your EM resistance will increase by 18% and the other three resistance will each decrease by 6%.
 
*Useful module for buffer tanking if you have a lot of armor EHP and will survive long enough for the shifting resistances to benefit you.
 
*Also it doesn't suffer from normal stacking penalties with other armor modules but does conflict with the DCU.
 
*The Armor Resistance Phasing skill will reduce cycle time and capacitor need of the module, which makes it a much better module. Before Kronos, the cap use reduction was less than the cycle time reduction meaning you would use more cap per time with higher skills. In Kronos both reductions go in step, so capusage stays constant.
 
*The modules looks at damage *after* resistances and shifts resistances accordingly. This makes the module usefull even if you are receiving omni damage as it will try to plug your worst holes.
 
  
=== Energized Plating  ===
+
Resistance percentages are calculated in a way that many people find confusing. A module may list itself as having a 30% bonus to resistances -- but the only time you'll actually see a 30% increase in resistance when using it is if your current resistance is 0%.
These are armor membranes, passive modules that boost armor attributes. They take a lot of CPU, but only 1 powergrid
 
  
*EANM (Adaptive) -- The Energized Adaptive Nano Membrane gives a boost to all 4 resistances. Very popular to increase armor resistance across the board.  30/36 CPU for T1/T2 versions.
+
The way the calculations work is that the percentage is applied to the remaining vulnerability. If things didn't work this way, you'd easily get resistances above 100%, and shooting you would cause armor to grow on your ship.  
*EALM (Layering) -- this module gives your ship a percentage bonus to armor. If you'd like to fit an armor plate, or an additional armor plate, consider this module instead. Because it's a percentage bonus, you get more benefit on larger ships. The T2 version of this has the same effect as a T1 trimark armor pump rig - the rig might be a better, to keep your low slots free.
 
*Specific hardeners (EM/Thermal/Kinetic/Explosive) -- these are used to boost one of the four resistances. Explosive hardeners are the most popular, because most ships have very low explosive resistances. In a ship with lots of tanking slots, you may do better to have these modules than multiple EANMs.
 
* The EANM and the specific energized membranes become more effective when you train your EM/Explosive/Kinetic/Thermal Armor Compensation skills, gaining 5% increase with each level.  For example, the T2 EANM gives you 20% to all resistances.  If you train all the Armor Compensation skills to 4, this will become a +24% to all resistances.
 
*The Imperial Navy Energized Adaptive Nano Membrane is one of the most popular faction modules and is pretty cheap nowadays.
 
  
=== Resistance Plating  ===
+
Resistances are easier to figure out if you think in damage vulnerability rather than damage resistance. A ship with 60% EM resist is better thought as a 40% damage received. Adding a 30% resist module multiplies the damage taken by 0.7 so you now take 0.7*0.4 = 0.28 = 28% of the raw damage.  
These modules are very similar to the energized membranes above, except they use no CPU and are less effective.  
 
  
*They have the same versions as the energized membranes.
+
Because of stacking penalties, and the way resistances multiply together, it is not possible to be 100% resistant to a damage type.
*They are very useful if you're short of CPU, and the faction variants approach the effectiveness of the energized modules.
 
*Use Energized Plating if you can, downgrading to Resistance Plating if you run out of CPU.
 
  
=== Armor Repairers  ===
+
It's often more sensible to increase the resistances of your ship than to increase the total number of HP. The damage reduction of resistance modules is a constant where as the buffer reduces with each attack. The fitting requirements for resistance modules are often less than the fitting requirements for Shield Extenders and armor plates. The one drawback is [[Stacking_penalties|stacking penalties]] that will inhibit the effectiveness of additional resistance modules but do not apply to Shield Extenders.  
*These modules repair your ship's armor, just as you'd expect. The better modules are more efficient, and may cycle somewhat faster.
 
*Armor reppers are not usually recommended in fleet PvP, because they cycle fairly slowly. If your ship is called primary, it's likely that the repper won't have time to cycle before your ship explodes. Fitting a buffer tank, and warping out when you're targeted, is recommended instead.  
 
*Reppers are, however, very useful in PvE activities, since NPC ships don't typically deal damage as quickly. See also [[Armor Repairer]]. They can also be extremely effective in solo PvP.
 
*For ships with armor repairer bonuses, such as the Gallente battlecruisers and battleships, two armor repairers can be very effective for mission runners, if cap stability can be maintained.
 
  
=== Ancillary Armor Repairers ===
+
==Armor tanking==
*Similar to the Armor Repairers with the following differences
 
*Always uses the same cap as a normal (T1/T2/Named) Armor Repper.
 
*Uses Nanite Repair Paste.
 
**Small uses 1 paste per cycle.
 
**Medium uses 4 paste per cycle.
 
**Large uses 8 paste per cycle.
 
*Holds 8 cycles worth of paste at a time.
 
*Reload time is 1 minute.
 
*When not loaded with Nanite Repair Paste, the AAR has 3/4 the rep amount as a T1 Armor Repairer.
 
*When loaded with Nanite Repair Paste, the AAR triples the rep amount (repairs 2.25x a T2 repairer when loaded).
 
*The AAR has the same cycle time and fittings as T1 reps.
 
*Limited to one per ship.
 
  
[http://i.imgur.com/RoF5Aj4.jpg Some graphs comparing ancillary vs normal repairers] - linked in [http://crossingzebras.com/hyperion-the-king-of-brawling-battleships/ Mr Hyde's article about the Hyperion]
+
Armor tanking emphasizes the use of the low slot modules increase armor hit points, resistance to damage and repair damage done to it. Regardless of the approach taken to armor tanking, it is wise to understand that armor on T1 hulls has an inherent weakness to explosive damage and plan your resistance modules accordingly. Armor tanking ships most commonly have high number of low slots to spare.
  
=== Remote Armor Repair Systems  ===
+
Armor tank generally has much stronger buffer than shield ships. There are more different kid of armor tanking modules than shield tanking modules, most notably energized adaptive memrane and reactive armor hardener do not have counterparts on shield.
*Remote repair modules repair armor on other pilots' ships. Note that you must target the ship to be repaired, and that your cannot repair your own ship with a remote repper. They are more useful in fleet operations than regular reppers, for a couple of reasons. First, one repper can repair many ships, given time. Second, the repper cycles more quickly than an onboard repper does. Third, if several ships have them, they can focus their repair power on whatever ship in the fleet is being attacked, giving that ship a great deal of armor repair capability. This is known as [[Spider Tanking]]. The problem with using the remote repair modules on non logi ships is the range, all the ships need to remain in a small area.
 
*Note that remote repair modules take a significant amount of capacitor to run -- non-logistics ships will probably need a cap booster module to use it for any length of time.
 
  
=== Armor Rigs  ===
+
Armor tanking modules are quite light on CPU usage but use lots of powergrid instead. Low slot using armor modules also leave all the mid slots free for various [[Propulsion equipment|propulsion modules]], [[Electronic warfare|electronic attack]] modules, capacitor modules or application modules. This freedom on mid slots makes armor tanked fits versatile. But using low slot for armor prevents you from using damage modules resulting in lower damage output.
There are a few commonly used [[Rig#Armor|armor rigs]]:
 
  
*Trimark Armor Pump -- The Tech I version gives a 15% boost to total armor, at the cost of some ship speed. It's the rig equivalent of the Armor Layering Membrane. Trimark rigs are not stacking penalised (armor HP is never stacking penalised). They apply after any fixed HP bonus from armor plates. Incurs a 10% penalty to maximum speed.
+
Armor repairers are more efficient at using capacitor but on the other hand single armor repairer repairs considerably less HP than corresponding shield booster. Armor repairs also apply the repair at the end of the module cycle requiring pilot to anticipate ehwn the repair is needed.  
*There are also damage-specific resistance improvement rigs. The most commonly used is the Anti-Explosive Pump, since armor tanks are generally weakest to explosive damage. Armor resist rigs are stacking penalized with; Armor Hardners, Energized Planing and Resistance Plating modules. Armor resist rigs penalize speed by 10%.
 
*Auxiliary Nano Pump -- Increases a ship's armor repairer repair amount per cycle by 15% at the expense of increased power grid use for local armor reps. Suffers from stacking penalties if you fit more than one.
 
*Nanobot Accelerator -- This rig speeds up armor repair module cycle times by 15%, again at the cost of power grid use. In theory this is more effective for active armor tanks than the Auxiliary Nano Pump, but because it also causes you to use a lot more capacitor, it is used less often. Despite what the description says, it doesn't suffers from stacking penalties if you fit more than one.
 
  
=== Armor Tank Implants  ===
+
Once your armor is gone your ship has only hull left. This leaves very little safety margin on armor ships. Combined with delayed repair cycles makes it possible for armor ships to easily die in between repair cycles.
*There are several useful implants that focus on armor tank improvement, all from the Inherent Implants "Noble" series:
 
**Repair Systems RS-6xx series - Slot 6 - reduces armor and hull repair systems duration by 1% to 6%, depending on model number
 
**Remote Repair Sustems RA-7xx series - Slot 7 - reduces capacitor need for remote armor repair modules by 1% to 6%, depending on model number
 
**Repair Proficiency RP-9xx series - Slot 9 - increases armor repair system amount by 1% to 6%, depending on model number
 
**Hull Upgrades HP-10xx series - Slot 10 increases armor hit points by 1% to 6%, depending on model number
 
  
*There is also the incredible Slave set of pirate implants.  
+
Armor plates and armor rigs give penalty to ship mass. This reduces the speed bonus from propulsion moduls and makes the ship less agile.
**This is a series of implants that fit into slots 1-6. Each provides a bonus to armor hit points, but when you fit the entire set, it provides a multiplicative total bonus of 53.63%. Unfortunately, a complete Slave set cost about 1.8 billion ISK or more.
 
**There is a less expensive low-grade Slave set, which provides an aggregate bonus of 33.83% to armor hit points. These are a relative bargain at only 750 million ISK or so.
 
**You can mix & match HG and LG Slave implants, for a final armor HP bonus partway in between.
 
  
*You can also get some officer-fit implants, that are variations of existing implant series except more effective. Once example is Akemon's Modified 'Noble' ZET5000 implant, which is an 8% version of the Hull Upgrades HP-10xx series of implants. It's correspondingly more expensive as well.
+
Unlike shields, armor has no passive regeneration of any kind. Armor repairers are the only way to get armor back.
  
== Armor Tanking Strategies ==
+
===Armor tanking modules===
Armor tanking emphasizes the use of the low slot modules described in the previous section to increase armor hit points, resistance to damage and repair damage done to it. Regardless of the approach taken to armor tanking, it is wise to understand that armor has an inherent weakness to explosive damage and plan your resistance modules accordingly.
 
  
There are two primary approaches to Armor tanking:
+
{|class=wikitable style="width: 900px;background:#111111"
*'''Buffer tanking'''
+
|-
*'''Active tanking'''
+
|[[File:Icon armor plate.png]]
*Note:'''Passive tanking''' doesn't exist in the same sense as in shield tanking, since armor doesn't repair itself.
+
|'''Armor plates''' increase the ships armor HP by a flat number. The drawback is increased mass that results in slower and less agile ship. It is somewhat common to fit oversized plates. For example 1600mm plates on a cruiser.
 +
|-
  
=== Buffer tanking ===
+
|[[File:Icon energized membrane.png]]
*Typically used for PvP, the buffer tank is based around the principle of having high damage resistance and as many hit points as possible, thus increasing the Effective HitPoints (EHP) of the ship. The concept behind this is simple, add enough EHP to your ship to outlast your opponent through the use of active and/or passive resistance modules, which complement the Armor Plate modules that add raw hit points.
+
|'''Energized armor lyering membranes''' are passive modules that increase ship's armor by a percentage ammount. These are rarely used as a plate and resist module are both better than this module.
*Ideally this should free up enough fitting slots, CPU and power grid to fit bigger weapons and more combat utility modules, such as tackling equipment, to maximize your damage output. This type of fitting uses a minimal amount of capacitor to run Armor Hardeners making it easily sustainable, but can be made fully passive by using only passive resistance modules instead. The primary drawback to Buffer Tanking is that you have no way to repair yourself, so when you run out of hit points you are toast.
+
|-
*Most common in fleet PvP, but also group PvE (like incursions, wormhole anomalies / signatures and a few others). In PvP a fleet will overwhelm an active tank in fairly short order, whereas a buffer tank will give you more survival time.  Although, some ships with faction gear and active tank bonuses can field some extremely resistant active tanks that can take on more than you might think.  In general if you are expecting to have Logistical support (friends to rep your armor) then you want to buffer tank more towards resistance, because the higher your resistances the more effective logistic reps are. While if you don't expect logistical support you only care about the Effective Hit Points, so whatever combination gives you more effective hit points is the best option.
 
  
=== Active Tanking ===
+
|[[File:Icon adaptive nano plating.png]]
*Active tanking is most commonly used for solo activities such as mission/complex running, ratting, and solo PvP. Active Tanking differs from Buffer Tanking in that it uses Armor Repair modules to actively repair damage done to the ship. You should be careful to include enough resistance and buffer to keep your repair modules from being overwhelmed by incoming damage; frequently this means packing resistance modules (either passive or active) that compensate for the specific types of damage you expect to be receiving.
+
|'''Layered platings''' are passive modules that increase ship's armor by a percentage ammount. These are less effective than the energized memrane variant but are much easier to fit. These are rarely used as a plate and resist module are both better than this module.
*This type of fitting takes a lot of capacitor to sustain your cap-hungry Armor Repair modules so it should ideally include modules such as Cap Rechargers and/or Capacitor Batteries to balance out and maintain capacitor stability.
+
|-
*Capacitor stability is important because it allows you to leave your Tank modules turned on without ever worrying about running out of capacitor. So long as incoming damage is less than what your repair modules can handle your ship should be able to sustain that level of damage indefinitely. This is commonly referred to as Perma-tanking. If incoming damage exceeds your repair capacity you will gradually run out of Hit Points and die. This is commonly referred to as having a broken tank.
 
*For PvP purposes a Cap Booster can be used to temporarily supplement capacitor output to allow for short bursts of heavy tanking. The primary drawback to this approach is that unlike the capacitor stable fitting described above, when you run out of charges to run your Capacitor Booster, you quickly run out of capacitor, your tank will fail and you will die horribly.
 
*Similarly, weapon systems that drain your ship's capacitor will effectively disable your active tanking modules. As above, your tank will fail and you will die horribly. In this case, the Capacitor Booster can be used on an otherwise capacitor stable fitting to provide emergency power to prevent being drained and destroyed.
 
  
=== Spider Tanking (Armor) ===
+
|[[File:Icon armor thermal hardener.png]]
*In simple terms, Spider tanking involves the use of a Buffer and/or highly resistant tank that is repaired remotely by other ships in your squad who are in turn repaired by remote repair modules on your ship. This is an advanced technique that requires a good deal of coordination to function effectively, and will be covered later in this guide.
+
|'''Armor hardeners''' are active modules that boost one of the four armor resistances: EM, Thermal, Kinetic or Explosive.<br>Compared to membranes, they use capacitor (not much though) and slightly more CPU but offer a large boost in effectiveness
 +
|-
  
=== Fitting Strategy ===
+
|[[File:Icon energized membrane.png]]
*Whether fitting active or buffer tanking it is advisable to use some sort of fitting tool, such as EFT or Pyfa, to create and compare fits:  
+
|'''Energized membranes''' are passive resist modules that moderately increase the armor resists. The resist bonus is smaller than on active hardeners but greater than on resistance platings. There are damage type specific modules that increase only one resist type and an adaptive membrane that increases all resist types. The name "adaptive" is misleading and the resist bonus is static. The resist bonus is increased by corresponding Armor Compensation skill.
**For PvP, fit the largest single plate you can, and then play around with '''Armor Hardeners''', '''Energized Plating''', '''Resistance Plating''' to get the most Effective Hit Points that you can get.
+
|-
**For PvE, fit one or two repair modules (depending on how much cap you have available), and then fit as many armor damage resistance modules of the appropriate damage types for the expected enemy.
 
  
== Armor Tanking Skill Summary ==
+
|[[File:Icon adaptive nano plating.png]]
The following skills are required to field a full Tech 2 Armor tank:
+
|'''Resistance platings''' are passive resistance modules that increase the armor resistances. They require practically nothing to fit, only 1 PG. They offer lower resist bonus than energized membranes or active hardeners. There are both type specific modules that increase only one resist type and an adaptive plating that increases all resist types. The name "adaptive" is misleading and the resist bonus is static. The resist bonus is increased by corresponding Armor Compensation skill.
*{{sk|Hull Upgrades}} V: To fit Tech 2 Resistance and Plate modules and maximize Armor hit points
+
|-
*{{sk|Mechanics}} V: to fit Tech 2 Armor Repairers and maximize your structure hit points
+
*{{sk|Repair Systems}} IV: to fit Tech 2 Armor Repairers
+
|[[File:Icon module damage control.png]]
 
+
|'''Damage control''' is a passive module that increases ship's shield, armor and hull resists. This module is not stacking penalized with most other resist modules. Only the reactive armor hardener is stacking penalized with damage control.
*The primary armor tanking skill is [[Skills:Armor#Hull_Upgrades|Hull Upgrades]], which grants a 5% bonus to armor hit points per skill level. Hull Upgrades V is the prerequisite for the most useful Tech II armor resistance modules.
+
|-
 
 
*[[Skills:Armor#Mechanics|Mechanics]] is also required to fit armor repairers, and should be trained up to level V to fit Tech II equipment and operate it effectively. Mechanics also provides a 5% bonus to structure hit points per skill level.
 
 
 
*Training the four armor-compensation skills is also important, since most of the commonly-used armor hardener modules will benefit significantly from them. These skills increase resistance to specific types of damage by 5% per skill level for passive armor hardeners, before Retribution 1.1 these skills also helped active modules but this is no longer the case. For regular armor tankers, each of these skills should be trained to at least level III or higher, IV is highly recommended. Maybe even V once your ships get bigger and more expensive.
 
**[[Skills:Armor#EM_Armor_Compensation|EM Armor Compensation]]
 
**[[Skills:Armor#Explosive_Armor_Compensation|Explosive Armor Compensation]]
 
**[[Skills:Armor#Kinetic_Armor_Compensation|Kinetic Armor Compensation]]
 
**[[Skills:Armor#Thermal_Armor_Compensation|Thermal Armor Compensation]]
 
 
 
*For armor rigs, [[Skills:Rigging#Jury_Rigging|Jury Rigging III]]  and [[Skills:Rigging#Armor_Rigging|Armor Rigging I]] are required to fit the Tech I rigs, [[Skills:Rigging#Armor_Rigging|Armor Rigging]] also reduces the speed penalty by 10% per level, at level 4 you can fit Tech 2 rigs.
 
 
 
*[[Skills:Armor#Repair_Systems|Repair Systems]] is required to operate armor repair-units effectively - each level reduces repair systems duration by 5%. Tech II units are available at skill level IV, though training to level V is recommended to minimize the length of repair unit cycles.  It should be noted that a reduction in activation time increase the capacitor need of the module.
 
 
 
*[[Skills:Armor#Armor_Layering|Armor Layering]] reduces the mass penalty of fitting armor plates by 5% per level.  Which means that if a ship is fitted with an armor plate, training this skill up improves both the ships agility all the time, and top speed when using an afterburner or microwarpdrive.  In other words training this skill up will reduce some of the disadvantages of choosing to armor tank.
 
 
 
*[[Skills:Armor#Armor_Resistance_Phasing|Armor Resistance Phasing]] is useful if you fit a Reactive Armor Hardener, It reduces the cycle time of the module (10% per level) and decreases the capacitor need (10% per level).  More information on the Reactive Armor Hardener later in the class.
 
 
 
*[[Skills:Shields#Shield_Management|Shield Management]] while not technically an armor tanking skill, increases your overall shield hit points by 5% per level, which helps any ship, regardless of the way its tanked.
 
 
 
*[[Skills:Shields#Tactical_Shield_Manipulation|Tactical Shield Manipulation]] also not technically an armor tanking skill (actually required for a Tech 2 shield tank) but it helps increase your shield buffer. When your shields fall below 25% damage starts "leaking" through to your armor, training this skill helps minimize how much damage leaks through, when trained to level 5 no damage leaks through.  This is a "nice to have" when it comes to armor tanking but not required.
 
 
 
==Armor Module Reference==
 
{| border="1" cellpadding="5" cellspacing="0"
 
|+(Ranges are for tech1 – tech2 versions)
 
|----
 
!colspan="2" rowspan="2"|Module Type
 
!colspan="3"|Fitting
 
!colspan="2"|Bonuses
 
!rowspan="2"|Notes
 
|----
 
 
 
 
 
!Cap
 
!PG
 
!CPU
 
!Resist
 
!Armor
 
 
 
|----
 
!Damage Control
 
|
 
|
 
|1
 
|25-30
 
|10-15%
 
|
 
|Also adds 7.5-12.5% shield and 50-60% structure resists
 
|----
 
!rowspan="2"|Armor plates
 
|100-
 
|
 
|8-18
 
|5-30
 
|
 
|263-1050
 
|
 
|----
 
 
 
|800-
 
|
 
|23-28
 
|200-500
 
|
 
|2100-4200
 
|
 
|----
 
!rowspan="3"|Resistance plating
 
|Adaptive
 
|
 
|1
 
|
 
|8-15%
 
|
 
|
 
|----
 
 
 
|Regenerative
 
|
 
|1
 
|
 
|
 
|6-8%
 
|
 
|----
 
 
 
|Specific
 
|
 
|1
 
|
 
|20-26%
 
|
 
|Damage-type specific
 
|----
 
!rowspan="3"|Energized plating
 
|Adaptive (EANM)
 
|
 
|1
 
|30-36
 
|15-20%
 
|
 
|
 
|----
 
 
 
|Regenerative
 
|
 
|1
 
|25-30
 
|
 
|13%-15%
 
|
 
|----
 
  
|Specific
+
|[[File:icon_reactive_armor_hardener.png]]
|
+
|'''Reactive armor hardener''' is a active module that increases armor resists. it gives in total 60% resist bonus split across all four damage types. When you first activate the module the resists are evenly split to 15% per damage type. As you receive armor damage the RAH will adjust its resist at the end of cycle by increasing the resist against two highest received damage types and reducing the resist against rest of the damage types. The resists shift by 6% per cycle. This module is not stacking penalized with most modules. Only the damage control is stacking penalized with this module.
|1
+
|-
|25-30
 
|33-38%
 
|
 
|Damage-type specific
 
|----
 
!Armor hardeners
 
|Specific
 
|30cap/20sec
 
|1
 
|33-36
 
|50-55%
 
|
 
|Damage-type specific, can be overloaded for 20% more resist
 
|----
 
!rowspan="3"|Armor repairers
 
|Small
 
|40cap/6sec
 
|5-6
 
|5-6
 
|
 
| +60-80
 
|rowspan="3"|Repairers can be overloaded for 10% more repair and 15% increased speed
 
|----
 
  
|Medium
+
|[[File:Icon armor repairer i.png]]
|160cap/12sec
+
|'''Armor repairers''' are modules that consume moderate ammount of capacitor and use that to repair the ship's armor.<br>
|150-173
+
The capacitor is consumed at the beginning of the cycle but the repair happens at the end of the cycle.
|25-28
+
|-
|
 
| +240-320
 
  
|----
+
|[[File:Icon armor repairer i.png]]
 +
|'''Ancillary armor repairers''' are similar to normal armor repairers. These modules can be loaded with nanite repair paste to drastically increase the repair ammount. With paste the ancillary armor repairers repair considerably (1.25x) more than normal armor repairers. Each cycle consumes one unit of paste. Once the paste runs out the module can be used without paste. Without paste the ancillary armor repairers repair considerably (0.75x) less than normal armor repairers. Reloading the paste takes one minute. During this time the module can not be used. These modules are used for repairing large ammount of armor in short burst. Limited to one per ship.
 +
|-
  
|Large
 
|400cap/15sec
 
|2000-2300
 
|50-55
 
|
 
| +600-800
 
  
|----
+
|[[File:Icon remote armor repair i.png]]
!rowspan="3"|Remote Reppers
+
|'''Remote Armor Repair Systems'''  consume significant ammount og capacitor to remotely repair armor on single target. The repair again happens at the end of the cycle. This can make it hard to repair targets if they die before the repair lands. Long optimal range, short falloff range. As a result the effectiveness drops rapidly if the target is beyond optimal range.
|Small
+
|-
|59-54cap/5-4.5sec
 
|7-8
 
|20-24
 
|
 
| +80-96
 
|rowspan="3"|While the T2 versions use less cap per activation, the shorter cycle time means they still use more cap overall.  
 
  
Remote reppers can be overloaded for 15% increased speed
+
|[[File:Module icon armor rig tech1.png]]
|----
+
|'''Rigs'''
 +
* Trimark Armor Pump increases the raw HP by a percentage. Reduces maximum speed.
 +
* Anti-damage type rigs increase damage resist to single damage type. Reduce maximum speed.
 +
* Auxiliary Nano Pump increases a ship's armor repairer repair amount per cycle. Increases the power grid use for local armor reps.
 +
*Nanobot Accelerator speeds up armor repair module cycle times by. Again at the cost of power grid use. In theory this is more effective for active armor tanks than the Auxiliary Nano Pump, but note that shorter cycle time also results in higher capacitor use.
 +
|-
  
|Medium
+
|[[File:Icon_implant_hardwiring.png]]
|118-108cap/5-4.5sec
+
|'''Implants'''
|150-165
+
*Repair Systems RS-6xx series - Slot 6 - reduces armor and hull repair systems duration by 1% to 6%, depending on model number
|30-36
+
*Remote Repair Sustems RA-7xx series - Slot 7 - reduces capacitor need for remote armor repair modules by 1% to 6%, depending on model number
|
+
*Repair Proficiency RP-9xx series - Slot 9 - increases armor repair system amount by 1% to 6%, depending on model number
| +160-192
+
*Hull Upgrades HP-10xx series - Slot 10 increases armor hit points by 1% to 6%, depending on model number
 +
* There is also the incredible Slave set of pirate implants.  
 +
** This is a series of implants that fit into slots 1-6. Each provides a bonus to armor hit points, but when you fit the entire set, it provides a multiplicative total bonus of 53.63%. Unfortunately, a complete Slave set cost about 1.8 billion ISK or more.
 +
** There is a less expensive low-grade Slave set, which provides an aggregate bonus of 33.83% to armor hit points. These are a relative bargain at only 750 million ISK or so.
 +
** You can mix & match HG and LG Slave implants, for a final armor HP bonus partway in between.
 +
|-
  
|----
+
|[[File:Icon exile.png]]
 
+
|'''Exile''' medical booster greatly increases the ship's active armor repair ammount.
|Large
+
|-
|252cap/5-4.5sec
 
|600-660
 
|40-48
 
|
 
| +320-384
 
  
 
|}
 
|}
  
= Shield Tanking =
 
Shield Tanking focuses on maximizing your shields' ability to withstand and/or repair damage.
 
  
== Advantages ==
+
=== Armor Tanking Skills ===
*Shields heal themselves over time at a natural recharge rate. Armor and Hull damage taken is going to sit there until it is repaired.
+
*{{sk|Hull Upgrades}}
*After shields are exhausted there is still some armor and hull remaining, leaving a little more room for error.  
+
** 5% armor HP per level
*Active shield boosters repair faster than active armor repairers, meaning you can effectively tank more incoming DPS
+
** Required for armor plates, hardeners, membranes and resist plates.
*Shield tank modules & rigs don't affect your speed or maneuverability, thus keeping you fast and agile.
+
*{{sk|Mechanics}}
*Low slots are left free for damage modules, etc.
+
** 5% hull HP per level
 +
** Reqruired for armor repairers
 +
*{{sk|Repair Systems}}
 +
** 5% reduction in armor repair module cycle duration. It should be noted that a reduction in activation time increase the capacitor need of the module.
 +
** Required for armor repairers
 +
* {{sk|EM Armor Compensation}}, {{sk|Thermal Armor Compensation}}, {{sk|Kinetic Armor Compensation}}, {{sk|Explosive Armor Compensation}}
 +
** 5% increase per level in the corresponding resist for membranes and resist plates
 +
* {sk|Armor Rigging}}
 +
** Reduces the drawbacks of armor rigs by 10% per level.
 +
* {{sk|Armor Layering}}
 +
** 5% redution in mass penalty of armor plates per level.
 +
* {{sk|Resistance Phasing}}
 +
** 10% reduction in cycle time and capacitor usage of reactive armor hardener per level.
  
== Disadvantages ==
+
==Shield tanking==
*There's a smaller range of different modules to choose from when shield tanking than when armor tanking, giving you less choice in how to fit your ship.
 
*Although shield boosters repair faster than armor repairers, they are also less capacitor efficient.
 
*Shield tank modules & rigs can increase your signature radius, that attribute of every ship that affects how fast other people target you, and how easy it is to hit you with turrets & missiles.
 
*Passive resistance modules are less effective than the armor equivalents, and there is no single passive resistance module that boosts all shield resistances at once.
 
*Shield tanking modules are almost exclusively fit in mid slots, competing with tackling, EWAR, and propulsion modules.
 
  
== Common Shield Tanking Ships ==
+
Shield Tanking: Focuses on maximizing your shields' ability to withstand and/or repair damage. This is the most common type of defense for ships with larger numbers of mid-slots, where most shield modules are fitted. It should be remembered that shields on T1 hulls are naturally weak to EM damage.
The Caldari and Minmatar are the two races that offer ships with shield-tanking bonuses.  
 
  
*Caldari ships are generally shield tanked, with the primary exceptions being plated [[Blackbird]]s and [[Scorpion]]s.  
+
The range of shield modules is somewhat more limited than that of armor modules. Most notable is the lack of good passive shield hardeners. As a result even buffer fit shield ships are often vulnurable to suficiently large number of neuting.
*Some Minmatar ships are commonly seen shield tanked, such as the [[Rifter]], [[Jaguar]], [[Stabber]], [[Vagabond]], [[Cyclone]], [[Sleipnir]], and [[Maelstrom]].
 
  
The Gallente and Amarr design ships which are mostly armor tanked. There are a few exceptions, and also a few ships which can mount shield buffer tanks for PvP.  
+
Shield modules generally fit on mid slots. This leaves low slots for damage modules, fitting modules or piloting modules. As a result shield ships generally have higher damage output than their armored cousins. But on the other hand using mid slots for tank limits the ship fitt into more or less pure damage dealing as the tank competes with tackling, EWAR, and propulsion modules.
  
*A few Gallente ships can be well shield tanked, such as the [[Myrmidon]] and the [[Ishtar]] which often use ''passive shield tanks'' in PvE. Some Gallente ships, such as the [[Brutix]] can fit viable shield buffer tanks for PvP.  
+
Shield extenders and shield rigs have penalty to the ship's signature radius. This makes it easier to hit shield ships. Shields generally also have less buffer than armor ships. This is most notable when fighting against ships larger than your own.
*Amarr ships are almost all better suited for armor tanks, but the [[Arbitrator]], [[Curse]] and [[Harbinger]] can mount good PvP buffer shield tanks.
 
  
== Shield Tanking Modules ==
+
Unlike Armor Repairers, Shield Boosters give the boost at the beginning of the cycle time instead of at the end, meaning you can wait until you need the shields to activate the shield booster instead of activating it in anticipation of needing it, as is commonly done with armor repairers. Shield boosters also repair much faster and more than armor repairers. This comes at cost of using more capacitor.
=== Shield Extenders ===
 
Shield Extenders are a mid slot mod are pretty straightforward -- they add base shield points. Remember that as increasing shield capacity also effectively increases shield recharge rate, they are also useful on passively tanked shields. As a drawback they increase the ship's signature radius which makes you faster to target and somewhat easier to hit with bigger weapons and for more damage. They also use significant power grid to fit.  You can easily oversize these modules; try fitting medium shield extenders to frigates and large ones to cruisers or battlecruisers.
 
  
=== Damage Control ===
+
After shields are exhausted there is still some armor and hull remaining, leaving a little more room for error.  
A Damage Control module gives a significant boost to any ship's durability by giving resistance bonuses to armor, shields and hull. This is the only module to increase hull resistances, which makes it very valuable in any tank. It is an passive module that is relatively easy to fit. These resistance bonuses don't incur stacking penalties with other shield tanking modules, making it very effective when combined with other hardeners and resistance amplifiers. If you fit only one tanking module to your PvP ship, the DC is the module to use.
 
  
=== Shield Hardeners ===
+
Shields heal themselves over time at a natural recharge rate. Armor and Hull damage taken is going to sit there until it is repaired. This passive regeneration is taken to extreme on passive shield fits described below.
Shield Hardeners require varying amounts of CPU and only one MW of power grid to fit, but do almost nothing to improve resistances when they are not activated. Like all active modules they will not run when you don't have enough energy in your capacitor to run them, or when you cannot activate them (such as when docked or cloaked).
 
  
=== Adaptive Invulnerability Field ===
+
=== Passive Shield Tanking ===
Among the Shield Hardeners, but worth mentioning separately, is the Adaptive Invulnerability Field which grants a bonus to resistance of all four damage types with one module. Although it requires more capacitor and more CPU to fit than the damage specific hardeners, it is still a very useful module.
 
  
=== Resistance Amplifiers ===
+
Unlike Armor hit points, shields will recharge themselves after taking damage. The Passive Shield tank is designed to maximize this natural recharge rate without the use of active Shield Booster modules. The concept behind the Passive Shield Tank is deceptively simple: find a ship with a relatively high natural recharge rate (Shield HP / Recharge time = Average recharge rate), then add as many additional shield hit points to your ship as possible using shield extenders. Because the recharge time for a given ship is a fixed amount no matter how many points of shields you have, adding multiple shield extenders not only adds a lot of buffer, it indirectly increases the recharge rate because more Hit Points are being recharged in the same amount of time. Now add passive modules that increase the recharge rate even further, such as Shield Rechargers, Shield Power Relays and Power Diagnostic Systems; and you have a monster sized Buffer tank that regenerates very quickly without using any capacitor making your defense invulnerable to weapons that drain the capacitor. Shield Flux Coils also increase recharge rate, but should be avoided because they also lower your shield hit points, which is self defeating for the same reason adding Shield Extenders improves your recharge rate.
There are four damage-type specific resistance amplifiers -- these are used to boost one of the 4 resistances. They use no capacitor and require less CPU than active shield hardeners, and can thus be quite useful.
 
  
The Basic modules use less CPU than the normal variants and no power grid, but are much less effective. They are useful if you're unable to fit a standard Resistance Amplifier.
+
As the name implies, a fully passive tank does not require any modules that need to be “turned on” to function, and therefore does not require capacitor. The drawback to Passive Shield tanking is the number of modules required to pull it off, which leaves very little room to fit other useful modules such as damage improvement and tackling equipment, which makes this fitting of limited use outside of mission running and bait ships.
  
Shield Dampening Amplifiers have two varieties: those that require more CPU and one Power Grid and have higher resistances, and those that have lower CPU requirements and no Power Grid and provide lower resistances.
+
While this fitting is more about raw hit points than it is damage resistance adding resit modules will greatly increase the effectiveness of passive recharge. Shield resistance amplifiers can be added to provide a little damage reduction. Some people use Adaptive Invulnerability Fields and Shield Hardeners to improve damage resistance, but these are active modules that require capacitor, thus making your Passive Shield tank not quite passive any more. This can be problematic because the Shield Power Relays you depend on to increase your shield recharge rate also totally gimp your capacitor recharge rate. For this reason careful balancing is necessary to make the Passive Shield Tank effective. When done correctly, however, Passive Shield tanking can be used to handle tough missions with a single ship.
  
The EM/Thermal/Kinetic/Explosive Shield Compensation skills will increase the benefit gained from these passive amplifiers.
+
It is generally advised '''NOT''' to mix modules that increase shield recharge rate with modules that repair shield damage.
  
=== Shield Power Relays ===
+
==== Understand Shield Recharge Rate ====
Shield Power Relays are low-slot modules, and they trade away capacitor recharge rate, for an increase in the ''shield recharge'' rate &ndash; or more regained shield HP/sec. Note that they are exclusively used in an extensive Passive Shield tank, and even then on ships which have the many slots required. The reason for this is the hampered capacitor: this slows Shield Booster use, as well as to some extent, the longevity of active Shield Hardeners.
+
It is valuable to understand the mechanics for shield recharge rate. All ships have some shields, and all shields have a recharge rate so this concept applies to every ship shuttle and pod in Eve, and thus to every pilot who undocks, and is similar to the recharge rate of a ship's energy capacitor.  In fact it is the same as your capacitor's recharge rate.
  
This module defines a passive shield tank. Since the relay modules fit in low slots, this means more Extenders may be fitted alongside them. On the other hand, this also means no low slot weapon upgrade modules for high damage. This will limit the situations where a passive tank may be used (see section on shield tanking strategy).
+
In a ship's information screen, on the attributes tab, under the shield heading, is listed the total shield amount of the hull, and the shield recharge time. The recharge time expresses how long it will take to go from 0% shields to roughly 98% shields when the ship is sitting idle in space and no one is repairing the shields or damaging them. That last ~2% of your shields will take much longer.
  
=== Shield Flux Coils ===
+
But shields do not recharge at a constant rate. Imagine a ship with a 440 shield and a shield recharge time of 440 seconds. To find out how many shield points you regain per second you might divide: 440 shields / 440 seconds = 1.0 shields per second.  
Shield Flux Coils are low-slot modules which trade the maximum shield capacity for an increase in the [[shield recharge rate]]. However, the reduction in capacity is minor, because of a paradoxical effect between maximum capacity and the regained HP/sec. This offsets the module's usefulness significantly. There are rarely situations where damage is so low that this module's tiny increase of HP/s is more useful, as compared to extra buffer HP (which indirectly increases shield recharge also) without the flux coil. They fit in a low-slot, but are outclassed by the more common Shield Power Relay. Thus, neither module competes with the slots for resistance modules and shield extenders.
 
  
=== Shield Rechargers ===
+
That is close but not quite correct. The ''average'' shield recharge rate is going to be 1.0 shields per second but sometimes it will be higher, and sometimes it will be lower.  
Shield Recharger modules are mid-slot modules which provide a modest increase to the shield recharge rate.  
 
  
=== Shield Boosters ===
+
The ''actual'' behavior is that when the shield is near 0% or 100% it replenishes slower. The ''peak recharge'' rate will be 2.5x the average rate and will occur when the shields are damaged to 25% of shield maximum capacity.  
These modules repair, or ''boost'', your ship's shield amount. The better modules are more efficient, and may cycle somewhat faster. Shield boosters are not very efficient, giving somewhere near 1 shield for 1 unit of capacitor for the meta 0 version and 1.5 shield for 1 unit of capacitor for the tech 2 version.
 
  
Unlike Armor Repairers, Shield Boosters give the boost at the beginning of the cycle time instead of at the end, meaning you can wait until you need the shields to activate the shield booster instead of activating it in anticipation of needing it, as is commonly done with armor repairers.  
+
Shield recharge rates above ~98% shield is extremely low. For ships with small shield capacity it is essentially non-existant. The shield recharge rate also drops sharply after 25%. Once shields have been damaged beyond 25% the passive tank "breaks" and the ship dies shortly.
  
Shield boosters are not usually recommended on Uni fleet operations, because while they typically cycle fairly quickly, they do not give large boosts to shields for each cycle and they are hard on your capacitor. If your ship is called primary, it's likely that the booster won't keep up with the incoming damage. Similarly, passive tanks that emphasize shield recharge rate likely won't keep up with the incoming damage. Fitting shield hardeners or resistance amplifiers with shield extenders and being prepared to warp out if you take fire is the recommended strategy.  
+
[[File:Shield_recharge.png|400px|thumb|Measured shield HP during passive recharge from zero and theoretical shield HP from formula plotted. Click to enlarge.]]
 +
[[File:Shield recharge rate.png|400px|thumb|Shield recharge rate as function of shield HP according to the formula. Click to enlarge.]]
  
Shield boosters can be useful in PvE activities. Typically you can reduce the incoming damage by eliminating some of the NPC ships to slow the incoming damage. This combined with ''pulsing'' the shield booster on and off (or setting Auto-Repeat to off) and/or using a capacitor booster and other capacitor modules can help pilots establish a balance point between the incoming damage and the capacitor energy used to run the shield booster. This is an active strategy and does require more focus than a passive tanking PvE strategy but can bring other benefits in fitting.  
+
As the shield takes damage, its level goes '''''down'''''. In response, the rate at which it rebuilds itself goes '''''up'''''. The increase in shield recharge rate continues until it peaks at 25% of shield capacity. At this threshold, the default ship Health Alert noise will sound, to warn the pilot that the shield is at its recharging limit. If it continues to take more damage than it can hold, the regeneration will drop off quickly. This means if constant damage is applied, the shield will regenerate less as it becomes empty, thus making it easier to shoot the armor below it.
  
=== Shield Boost Amplifiers ===
+
{{ note box | THE MAIN POINT: In combat the shield will recharge at an increasing rate until 25% of its capacity remains; then the rate will fall off quickly towards zero.}}
These modules improve the efficiency of Shield Boosters. Given that they occupy a valuable mid-slot, they are infrequently seen on cruiser sized and smaller hulls, but are more commonly seen on battlecruisers and battleships in PvE activities. These modules have a stacking penalty and typically no more than two is ever appropriate on any ship. Tech II gives 36% increase compared to a 30% for tech I.  Note that they will boost the Ancillary Shield Booster as well.
 
  
=== Ancillary Shield Boosters ===
+
The math for shield regeneration is exactly the same as for the [[capacitor recharge rate]]. Two numerical attributes are required: shield capacity, and shield recharge time. These are both displayed in the ship's "show info" attributes panel in-game, below its capacity. Note that modules that refer to "recharge rate" modify the recharge time number, not the raw regeneration in HP/s.
The Ancillary Shield Booster works in the same way as a normal Shield Booster does: it transfers capacitor energy into shield hit-points (HP), but it repairs a lot more shield HP per cycle than a normal Shield Booster does. It has an efficiency of around 1 shield unit to 1 capacitor unit, and this means it would use a huge amount of capacitor per cycle. However, the main advantage of the Ancillary Shield Booster is that it is able to use Cap Booster Charges as a direct source of cap energy. The size of the charge depends on the size of Shield Booster. It always uses 1 charge per cycle, and when the cap booster charges are spent, only then does it use the ship's capacitor. The maximum number of charges an Ancillary Shield Booster can hold is 10. The recharge amount doesn't depend on the charge size, so '''always''' load the smallest possible charges to give the largest number of cycles per reload. Due to the short cycle time the Ancillary Shield Booster depletes within 20 to 40 seconds depending on the module size. After the charges are depleted you can run the Ancillary Shield Booster without charges (it then uses your ship's capacitor) or you can reload it. But here is the biggest drawback of the module, the reloading time is 60 seconds. Currently only a tech 1 version is available. The quick transfer of cap energy to shield HP has made this popular in PVP.
 
  
The Ancillary Shield Booster's main features:  
+
[[File:EVE Cap Recharge Rate Diff Formula.png|center|300px]]<!-- TeX: {\color{White}{dC\over dt}={2C_\mathrm{max}\over\tau}\left(\sqrt{C\over C_{\mathrm{max}}}-{C\over C_\mathrm{max}}\right)} -->
*It works like a Shield Booster
 
*It repairs more shield HP than a Shield Booster per cycle (around 1:2.2)
 
*It needs high amounts of capacitor if you run out of cap booster charges (around 1:1)  
 
*It can use Cap Boosters as charges and uses one charge per cycle
 
*Its reload time is 60 seconds
 
  
=== Remote Shield Boosters ===
+
...where:<br />
Remote Shield Boosters operate similarly to local Shield Boosters by converting capacitor energy into shields, except in this case the shields are added to your target (ships, drones, anchored structures, etc). Note that you must target lock the ship to be repaired, and that your cannot repair your own ship with a remote shield booster.  
+
'''C''' is your current shield HP.<br />
 +
'''C<sub>max</sub>''' is your maximum shield HP.<br />
 +
''dC''/''dt'' is your current shield regeneration in HP/s.<br />
 +
''τ'' is shield recharge time divided by 5.
  
They can be more useful in fleet operations than shield booster, for a couple of reasons. First, one RSB can repair many ships. Second, an RSB is generally more efficient than a shield booster. Third, if several ships have them, they can focus their repair power on whatever ship in the fleet is being attacked, giving that ship a great deal of shield repair capability. This tactic is used by [[Cruiser#Logistics|Logistics]] cruisers and several T1 cruisers to try and repair the damage being done to friendly ships; thus the ship is either saved, or at worst survives a while longer, allowing the rest of the fleet some more time to burn through the hostile ships.
+
;Consequences
  
Remote repair is also the favoured form of defense in [[Incursions]]; ships will mount a large buffer tank to be repaired by a small number of highly skilled [[Cruiser#Logistics|Logistics]] pilots.
+
The fact these attributes are both set has some interesting consequences. Notably for this calculation, recharge time is ''not'' dependent on anything else, including maximum shield capacity – as you might have intuitively expected. This has the effect that if two ships have the same "recharge time" attribute, and one has more capacity, then the one with the larger capacity will get more raw HP/s regeneration, and appear to 'repair faster', despite reaching its maximum level in the same time. In simple terms, recharge is calculated ''by percentage'' first; which is then translated into HP/s of regeneration. So maximum capacity indirectly affects the amount of HP/sec regenerated, having the effect that Extender modules increase regeneration, and flux coils become much less useful compared to Rechargers or Power Relays.
  
Note that remote repair modules take a significant amount of capacitor to run -- your ship will probably need a cap booster module to use it for any length of time.
+
;Calculating Average rate
  
=== Power Diagnostics Systems ===
+
The average shield regeneration per second can be computed by dividing the shield capacity by its recharge time.
Power Diagnostics Systems are low-slot modules that increase your shield points, capacitor points and power grid while also reducing the recharge time of both shield and capacitor by a small percentage. They are not shield modules, strictly speaking, and can be found in the Engineering equipment section.
 
  
=== Capacitor Power Relays ===
+
Average HP/s = Shield maximum / Recharge time
These are not a shield tanking module, but I mention them because they have an ''adverse'' effect on shield tanking. Capacitor Power Relays are a low slot module that greatly increases capacitor recharge, which would be an active shield tanker's dream, except that to balance this capacitor power relays apply a penalty to shield boost amount when fitted. As such, they are not recommended for active shield tank fits. Capacitor Power Relays do not penalise passive shield tanks, and the penalty does not apply to Remote Shield Boosters.
 
  
=== Shield Rigs ===
+
The peak recharge Rate is 250% of average shield recharge. It occurs when the capacity of the shield is at 25% of its maximum value. Shield recharge rate drops rapidly below 25% shield capacity.
For shield rigs, {{sk|Jury Rigging|III}} and {{sk|Shield Rigging|I}} are required to fit T1 rigs, though not to use them. All shield rigs bring with them the penalty of an increase signature radius on the ship using them.  
 
  
There are several commonly used shield rigs.
+
=== Shield tanking modules ===
*Core Defense Field Extender works similarly to a Shield Extender by increasing shield capacity.
 
*Core Defense Field Purger works similarly to a Shield Recharger by increasing the shield recharge rate. It is however, a lot more effective than a Shield Recharger, and is a staple on almost all passively-tanked ships.
 
*Screen Reinforcers increases a ship resistance to single type of damage. The most commonly used is the Anti-EM Screen Reinforcer I, because typically shields are vulnerable to EM damage.
 
**Anti-EM Screen Reinforcer
 
**Anti-Explosive Screen Reinforcer
 
**Anti-Kinetic Screen Reinforcer
 
**Anti-Thermal Screen Reinforcer
 
*Core Defense Capacitor Safeguard makes a shield booster run more efficiently reducing the cap requirement, whilst the Core Defense Operational Solidifier makes the booster run faster, increasing tank but also capacitor use. Unlike its armour equivalent, usually ignored in favour of a boost amplifier module.
 
*Core Defense Charge Economizer reduces the powergrid need of shield extenders. Rarely used except in some very large buffers to pvp fits. Much cheaper than the general PG upgrade rig.
 
  
<br> '''Other rigs'''  
+
{|class=wikitable style="width: 900px;background:#111111"
 +
|-
 +
|[[File:Icon shield extender.png]]
 +
|'''Shield extenders''' increase ships shield HP by a flat number. The drawback is increased signature radius that makes the ship easier to hit. Oversized modules are often used. For example medium shield extender on a frigate.
 +
|-
  
*For Active shield fits capacitor will be a major concern and many will rely on a Capacitor Control Circuit I to make the tank work.  
+
|[[File:Icon resists.png]]
 +
|'''Shield hardeners''' are active modules that increase ship's shield resists. Adaptive invulnerablility field increases resist to all damage types but less than type specific modules. The name is misleading and the module does not adapt to damage like the reactive armor hardener. Active shield hardeners are considerably more effective than the passive shield resistance amplifiers.
 +
|-
  
=== Shield Implants ===
+
|[[File:Icon thermal amplifier.png]]
There are various shield implants available on the market. These can be interesting for various shield fits. This is especially true for passive tanks, where the tank can be increased by 6% for just a few million.  
+
|'''Shield resistance amplifiers''' are passive modules that increase ship's shield resists. Easier to fit than active hardeners and do not need any capacitor. Considerably lower resist bonus compared to active hardeners. The resist bonus increases with apropriate shield compnsation skill. There is no resistance amplifier that increases all resist types like there is for armor.
 +
|-
  
*Slot 6: Zainou 'Gnome' Shield Upgrades SU-6 series... Reduces shield extender power needs by a few&nbsp;%. Rarely used
+
|[[File:Icon module damage control.png]]
*Slot 7: Zainou 'Gnome' Shield Management SM-7 series... Bonus to shield capacity. Useful for buffer and passive tanks
+
|'''Damage control''' is a passive module that increases ship's shield, armor and hull resists. This module is not stacking penalized with any other shield resist module.
*Slot 8: Zainou 'Gnome' Shield Emission Systems SE-8 series... Reduced capacitor need for remote shield repair equipment. Useful for logistics fits
+
|-
*Slot 9: Zainou 'Gnome' Shield Operation SP-9 series... Increases shield recharge rate. useful for passive tanks
 
*Slot 10: Siege Warfare Mindlink; technically not a direct shield implant, but increases the effectiveness of shield leadership skills in fleets.
 
  
You can also pick up the 'Crystal' pirate implant set for a large amount of ISK.  This is a set of 6 implants that fit in slots 1 to 6, and taken together will increase your shield boosting rates to fantastic levels - such as this Sleipnir ''(link in chat: http://i.imgur.com/hwsM51F.jpg)'' which tanks nearly 1900 DPS of incoming damage, and that's without overheating or using a booster. The 'Crystal' set comes in high-grade, mid-grade, and low-grade versions, low-grade being for the poor people out there that can't afford the real deal. You can mix and match from different grade sets for a final boost bonus somewhere in between the two values stated on the presentation. (See [[Implants#Advanced_Attribute_Enhancer_Reference|here]] for boost percentages.)
+
|[[File:Icon shield recharger.png]]
 +
|'''Shield power relays''' are passive modules that increase ship's shield recharge rate at the cost of reduced capacitor recharge rate. This module defines a passive shield tank. Since the relay modules fit in low slots, this means more Extenders may be fitted alongside them. On the other hand, this also means no low slot weapon upgrade modules for high damage. This will limit the situations where a passive tank may be used. One of the few low slot shield modules.
 +
|-
  
=== Boosters ===
+
|[[File:Icon shield recharger.png]]
*The "Blue Pill" range of boosters adds bonuses to the repair amount of shield boosters.  
+
|'''Shield flux coils''' are passive modules that increase ship's shield recharge rate at the cost of reduced shield capacity. The reduced shield capacity reduces the shield recharge rate but the recharge rate bonus on flux coils is larger than on power relays resulting in higher recharge rate.
*"Mindflood" boosters can also come in handy, as they increase capacitor capacity, which in turn boosts cap recharge rate and allows shield boosters and active shield hardeners to run longer.  
+
|-
  
== Shield tanking Strategies ==
+
|[[File:Icon shield recharger.png]]
Shield tanking comes in three types.  
+
|'''Shield rechargers''' are passive mid slot modules which provide a modest increase to the shield recharge rate. If there is fitting room for shield extender then that may be a better choice.
 +
|-
  
*'''Active shield tanks'''  
+
|[[File:Icon shield glow.png]]
 +
|'''Shield boosters''' consume ship's capacitor and repair, or ''boost'', the shields in exchange. The repair happens at the beginning of the module cycle.
 +
|-
  
*'''Buffer shield tanks''' use shield extenders and resistance modules (like the Adaptive Invulnerability Field, and damage control) to maximize the ship's EHP (Effective Hit Points) without concern for recharge. This type of shield tanking is often used in PvP fleet fits.
+
|[[File:Icon ancillary shield booster.png]]
 +
|'''Ancillary shield booster''' works in the same way as a normal Shield Booster does: it transfers capacitor energy into shield HP, but it repairs a lot more shield HP per cycle than a normal Shield Booster does. Repairs around 40% more than a normal shield booster. Can be loaded with cap boosters. While the module has cap boosters loaded it uses no capacitor at all.  After the cap boosters run out the ancillary shield booster uses over three times more capacitor than a normal shield booster. Reloading the cap boosters takes one minute. During this time the ancillary shield booster can not be used. The size of used cap booster has no effect. The smallest useable cap booster should always be used to maximize number of cycles. With smallest navy cap boosters the ancillary shield booster always fits 10 charges. This module is used to get very high active repair for short duration. More than one ancillary shield booster can be fitted.
 +
|-
  
*'''Passive shield tanks'''  
+
|[[File:Icon shield boost amplifier.png]]
 +
|'''Shield boost amplifiers''' are passive mid slot modules that increase shield booster repair ammount by around 30%. The fitting requirements are about same as on a medium shield booster. This makes these impractical for sub battleship hulls. The repair increase is without additional capacitor usage. If capacitor is limiting then a boost amplifier can be used instead of second shield booster.<br>
 +
Doubles the module damage from overheating.
 +
|-
  
=== Active Tanking ===
+
|[[File:RemoteShieldBoostIcon.png]]
Active tanking is most commonly used for solo activities such as mission/complex running, ratting, and solo PvP. Active Shield tanking differs from Passive Shield tanking in that it uses active Resistance and Shield Booster modules to actively repair damage done to the ship.
+
|'''Remote shield boosters''' use capacitor to repair shields of a single target. You must target lock the ship to be repaired, and that your cannot repair your own ship with a remote shield booster.  
You should be careful to include enough resistance and buffer to keep your Booster modules from being overwhelmed by incoming damage; frequently this means packing resistance modules (either passive or active) that compensate for the specific types of damage you expect to be receiving.
+
|-
  
This type of fitting takes a lot of capacitor to sustain your capacitor hungry Shield Hardener and Booster modules so it should ideally include modules such as Cap Rechargers to balance out and maintain capacitor stability. Unlike the Passive Shield tank Shield Power Relays are not recommended because they cripple your capacitor recharge rate making capacitor stability difficult to achieve. Shield Flux Coils still suck for the same reasons mentioned previously.
+
|[[File:Icon powergrid.png]]
 +
|'''Power diagnostics systems''' are low slot engineering modules. Small percentage increase to shield capacity, capacitor capacity, powergrid output, shield recharge rate and capacitor recharge rate.
 +
|-
  
Active Tanking uses energy from the ship's capacitor to run a Shield Booster module which repairs damage to shields. Active shield tanks are stronger against higher bursts of damage but tend to drain the pilot's capacitor over time resulting in the tank 'breaking' during long engagements and are vulnerable to capacitor warfare (tactics which drain a ship's capacitor actively, such as Nosferatu and Energy Neutralizers, see the [[Capacitor Warfare Guide]]).
+
|[[File:Icon capacitor recharger.png]]
 +
|'''Capacitor power relays'''are not exactly a shield modules. Passive low slot engineering modules that increase capacitor recharge rate at the expense of reduced shield booster repair ammount. Thse modules are generally avoided on active shield tanked ships. The penalty does not apply to remote shield boosters.
 +
|-
  
Capacitor stability is important because it allows you to leave your Tank modules turned on without ever worrying about running out of capacitor. So long as incoming damage is less than what your shield booster modules and passive recharge rate can handle your ship should be able to sustain that level of damage indefinitely. This is commonly referred to as Perma-tanking. If incoming damage exceeds your recharge capacity you will gradually run out of Hit Points and die. This is commonly referred to as having a broken tank.
+
|[[File:Module icon shield rig tech1.png]]
 +
|'''Rigs'''
 +
* Core defense field extenders increase shield capacity by a percentage ammount.
 +
* Core defense field purgers increase the shield recharge rate. It is however, a lot more effective than a Shield Recharger, and is a staple on almost all passively-tanked ships.
 +
* Screen Reinforcers increases a ship resistance to single type of damage. The most commonly used is the anti-EM and anti-thermal reinforcers as the shields are naturally vulnurable to these damage types.
 +
* Core defense capacitor safeguards make a shield booster run more efficiently reducing the cap requirement
 +
* Core defense operational solidifiers make the shield boosters run faster, increasing tank but also capacitor use. Unlike its armour equivalent, usually ignored in favour of a boost amplifier module.
 +
* Core defense charge economizers reduce the powergrid need of shield extenders. Rarely used except in some very large buffers to pvp fits. Much cheaper than the general PG upgrade rig.
 +
* For active shield fits capacitor will be a major concern and many will rely on a capacitor control circuit I to make the tank work.  
 +
|-
  
For PvP purposes a Capacitor Booster can be used to temporarily supplement capacitor output to allow for short bursts of heavy tanking. The primary drawback to this approach is that unlike the capacitor stable fitting described above, when you run out of charges to run your Capacitor Booster, you quickly run out of capacitor, your tank will fail and you will die horribly.
+
|[[File:Icon implant hardwiring.png]]
 +
|'''Implants'''
 +
* Slot 6: Zainou 'Gnome' Shield Upgrades SU-6XX series reduces shield extender powergrid needs by a few&nbsp;%. Rarely used.
 +
* Slot 7: Zainou 'Gnome' Shield Management SM-7XX series bonus to shield capacity. Useful for buffer and passive tanks.
 +
* Slot 8: Zainou 'Gnome' Shield Emission Systems SE-8XX series reduced capacitor need for remote shield repair equipment. Useful for logistics fits.
 +
* Slot 9: Zainou 'Gnome' Shield Operation SP-9XX series increases shield recharge rate. useful for passive tanks.
 +
* You can also pick up the 'Crystal' pirate implant set for a large amount of ISK. This is a set of 6 implants that fit in slots 1-6, and taken together will increase your active shield boosting rates to fantastic levels. The 'Crystal' set comes in high-grade, mid-grade, and low-grade versions, low-grade being for the poor people out there that can't afford the real deal. You can mix and match from different grade sets for a final boost bonus somewhere in between the two values stated on the presentation.
 +
|-
  
Similarly, weapon systems that drain your ship's capacitor will effectively disable your active tanking modules. As above, your tank will fail and you will die horribly. In this case, the Capacitor Booster can be used on an otherwise capacitor stable fitting to provide emergency power to prevent being drained and destroyed.
+
|[[File:Icon blue pill.png]]
 +
|'''Blue Pill''' medical booster greatly increases the ship's active shield boosting ammount.
 +
|-
  
Here is an example of a [[Stabber/Fittings#PvE_T2_Shield|Minmatar Stabber]] cruiser fitted with an active shield tank.
+
|}
  
=== Buffer Tanking ===
 
*Typically used for PvP, the buffer tank is based around the principle of having high damage resistance and as many hit points as possible, thus increasing the Effective HitPoints (EHP) of the ship. The concept behind this is simple, add enough EHP to your ship to outlast your opponent through the use of active and/or passive resistance modules, which complement the Armor Plate modules that add raw hit points.
 
*Buffer Tanks use shield extenders and resistance modules (like the Adaptive Invulnerability Field, and damage control) to maximize the ship's EHP (Effective Hit Points) without concern for recharge. This type of shield tanking is often used in PvP fleet fits.
 
  
=== Passive Shield Tanking ===
+
=== Shield skills===
{{main|Passive shield tanking}}
+
The following skills are required to field a full Tech 2 Shield tank:
Unlike Armor hit points, shields will recharge themselves after taking damage. The Passive Shield tank is designed to maximize this natural recharge rate without the use of active Shield Booster modules. The concept behind the Passive Shield Tank is deceptively simple: find a ship with a relatively high natural recharge rate (Shield HP / Recharge time = Recharge rate), then add as many additional shield hit points to your ship as possible using shield extenders. Because the recharge time for a given ship is a fixed amount no matter how many points of shields you have, adding multiple shield extenders not only adds a lot of buffer, it indirectly increases the recharge rate because more Hit Points are being recharged in the same amount of time. Now add passive modules that increase the recharge rate even further, such as Shield Rechargers, Shield Power Relays and Power Diagnostic Systems; and you have a monster sized Buffer tank that regenerates very quickly without using any capacitor making your defense invulnerable to weapons that drain the capacitor. Shield Flux Coils also increase recharge rate, but should be avoided because they also lower your shield hit points, which is self defeating for the same reason adding Shield Extenders improves your recharge rate.
 
  
As the name implies, a fully passive tank does not require any modules that need to be “turned on” to function, and therefore does not require capacitor. The drawback to Passive Shield tanking is the number of modules required to pull it off, which leaves very little room to fit other useful modules such as damage improvement and tackling equipment, which makes this fitting of limited use outside of mission running and bait ships.
+
*{{sk|Shield Management}}
 +
** 5% increase in shield capacity per level.
 +
** Required for shield boost amplifiers.
  
Passive Shield Tank relies on the fact that shields will naturally recharge themselves over time. This is achieved by increasing the resistance to various damage types, increasing the natural recharge rate (by adding recharge rate bonuses), and increasing the overall size of the shield (because recharge rate is proportional to shield capacity).
+
*{{sk|Energy Grid Upgrades}}
 +
** 5% PG per level. Required for shield power relays and power diagnostic units.
  
Note: This fitting is more about raw hit points than it is damage resistance, but if you have enough fitting room, Shield resistance amplifiers can be added to provide a little damage reduction. Some people use Adaptive Invulnerability Fields and Shield Hardeners to improve damage resistance, but these are active modules that require capacitor, thus making your Passive Shield tank not quite passive any more. This can be problematic because the Shield Power Relays you depend on to increase your shield recharge rate also totally gimp your capacitor recharge rate. For this reason careful balancing is necessary to make the Passive Shield Tank effective. When done correctly, however, Passive Shield tanking can be used to handle tough missions with a single ship.
+
*{{sk|Shield Upgrades}}
 +
** 5% reduction in shield extener PG usage.
 +
** Required for resistance amplifier, shield recharger modules.
  
==== Understand Shield Recharge Rate ====
+
*{{sk|Shield Operation}}
It is valuable to understand the mechanics for shield recharge rate before you continue. All ships have some shields, and all shields have a recharge rate so this concept applies to every ship shuttle and pod in Eve, and thus to every pilot who undocks, and is similar to the recharge rate of a ship's energy capacitor.  In fact it is the same as your capacitor's recharge rate.
+
** 5% reduction in shield recharge time per level.
 +
** Required for shield boosters and maximize shield recharge.
  
In a ship's information screen, on the attributes tab, under the shield heading, is listed the total shield amount of the hull, and the shield recharge time. The recharge time expresses how long it will take to go from 0% shields to roughly 98% shields when the ship is sitting idle in space and no one is repairing the shields or damaging them. That last ~2% of your shields will take much longer.
+
*{{sk|Tactical Shield Manipulation}}
 +
** Reduces damage bleeding to armor through shields-.
 +
** Required for shield hardeners. No good reason for training beyond IV unless you want to use certain capital modules.
  
But shields do not recharge at a constant (linear) rate. Imagine a ship with a 440 shield and a shield recharge time of 440 seconds. To find out how many shield points you regain per second you might divide: 440 shields / 440 seconds = 1.0 shields per second.
+
* {{sk|EM Shield Compensation}}, {{sk|Thermal Shield Compensation}}, {{sk|Kinetic Shield Compensation}}, {{sk|Explosive Shield Compensation}}
 +
** Increases the specific resist of the passive shield resistance amplifiers.
 +
** Training the four damage type-specific shield compensation skills is less important. The passive Shield Amplifier modules benefit most from them, but are not widely used, but active resistance modules (like Adaptive Invulnerability Fields) get no benefit at all. These skills are:  
  
That is close but not quite correct. The ''average'' shield recharge rate is going to be 1.0 shields per second but sometimes it will be higher, and sometimes it will be lower.  
+
* {{sk|Shield Compensation}}
 +
** 2% reduced capacitor usage for shield boosters.
  
The ''actual'' behavior is that when the shield is near 0% or 100% it replenishes slower. The ''peak recharge'' rate will be approximately 2.5 shields per second and will occur when the shields are damaged to somewhere near 25% of shield capacity remaining. Page 10 of the presentation shows this behaviour graphically.
+
* {{sk|Shield Emission Systems}}
 +
** 5% reduced capacitor usage for remote shield boosters.
  
This imaginary shield tanked ship above takes a constant damage of 5 damage every 8 seconds  It will
+
* {{sk|Shield Rigging}}
slowly lose shields as the incoming damage is greater than the amount of shields recharging.  Somewhere
+
** Reduces the drawbacks of shield rigs.
around 50% shield capacity the shields will start to heal about 5 damage every 8 seconds and the tank
 
will stabilize at this equilibrium.
 
...
 
When a new damage source is then added to the scenario, adding an additional 5 damage every 8 seconds
 
the ship will begin to lose shields again.  Somewhere around 35% the incoming damage will barely be
 
more than the ship replenishes and the shield tank will be ''broken'' as the ship falls below it's
 
''peak recharge'' rate.  From here the ship's recharge rate drops off quickly and the shields will be
 
exhausted soon.
 
...
 
If the original damage source is removed just as the ship is at 30% shields, leaving only 5 damage
 
every 8 seconds the shields might stabilize again but if the original damage source is removed as
 
the ship reaches 10% shields the recharge rate will be too low and the ship will continue to lose
 
shields, and continue into armor and hull damage unless the incoming damage is effectively reduced
 
to zero.
 
  
Shield recharge rates above ~98% shield is extremely low. For ships with small shield capacity it is essentially non-existant.  
+
*{{sk|Hull Upgrades}}
 +
** 5% hull HP per level. Required for damage control.
  
As we increase the total shield capacity, the average shield recharge rate will increase
+
==Hull tanking==
  
The ship before with 440 shields and a 440 second recharge period is improved to have twice the shield
+
Hull tanking is known as the manliest form of tanking. With hull tanking there is no safety buffer. Once your hull tank is gone your ship goes out in gloriour explosion. Additionally the incoming damage slowly bleeds into the ship's modules making it unwise to hull tank for long period of time. Not that you could maintain hull tank anyways since all active hull repair methods are laughably slow. Even the T2 hull repairers have staggering 24 second cycle time.
capacity:  880 shields and a 440 second recharge. The average shield recharge rate will be
 
880 / 440 = 2.0 shields per second, and peak recharge will be near 3.8 shields per second.
 
  
Similarly improving the shield recharge rate will increase the average shield recharge rate
+
Regardless of these disatvantages hull tank is sometimes used uninorically. A bait ship with hull tank can lull the gankers into false feel of victory as they see the shields and armor waning away, only to spend ages grinding down the hull. Gallente ships like [[Brutix]] have notablu high ammount of hull HP on the hull making them viable at hull tanking.
  
We double the shield recharge rate instead:  440 shields in 220 seconds. Now
+
As all the practically useful hull tanking modules are passive there is nothing that neuting can do to this type of tank.
the average shield recharge rate will be 440 / 220 = 2.0 shields per second. Peak recharge increases
 
as well.
 
  
Passive Shield Tanking is a difficult concept and a separate wiki page,[[Passive_Shield_Tank|Passive Shield Tank]], is devoted to fits and utilizing it in combat.
+
{|class=wikitable style="width: 900px;background:#111111"
 +
|-
 +
|[[File:Icon reinforced bulkhead.png]]
 +
|'''Reinforced bulkheads''' give a percentage bonus to hull HP. These are the only modules taht increase hull HP.
 +
|-
  
=== Spider Tanking (Shield) ===
+
|[[File:Icon module damage control.png]]
In simple terms, Spider tanking involves the use of a Buffer and/or highly resistant tank that is repaired remotely by other ships in your squad who are in turn repaired by shield transporter modules on your ship. However, this is an advanced technique that requires a good deal of coordination to function effectively, and is better left for discussion later in this guide.
+
|'''Damage control''' increases ship's hull resist to all damage.
 +
|-
  
=== Fitting Strategy ===
+
|[[File:Icon hull repairer i.png]]
 +
|'''Hull repairers''' use capacitor to repair hull. These modules are extremely slow and can not be practically used in combat.
 +
|-
  
It's often more sensible to increase the resistances of your ship than to increase the total number of shield points. The damage reduction of resistance modules is a constant where as the shield buffer reduces with each attack.  The fitting requirements for resistance modules are often less than the fitting requirements for Shield Extenders. The one drawback is [[Stacking_penalties|stacking penalties]] these will inhibit the effectiveness of additional resistance modules but do not apply to Shield Extenders.  
+
|[[File:Icon remote hull repair i.png]]
 +
|'''Remote hull repairers''' allow you to remotely repair hull on another ship. These modules are extremely slow and can not be practically used in combat. No ship is bonused for using these modules.
 +
|-
  
Imagine you have a shield booster that repairs 100 points per cycle. If someone
+
|[[File:Module icon armor rig tech1.png]]
deals you 1000 points of EM damage, to which you have a 10% resistance, will result
+
|'''Transverse bulkheads''' give a large percentage bonus to hull HP. No other rig gives any bonuses to hull.
in 900 points of shield damage. Your shield booster will repair this in 9 cycles. 
+
|-
If someone deals you 1000 points of explosive damage to which you have 70%
 
resistance, you'll only sustain 300 points of shield damage, which the shield
 
booster will fix in three cycles.
 
 
So you would use three times as much energy, and take three times as long to repair
 
the EM damage because of the lack of resistance.
 
  
It is generally advised  '''NOT''' to mix modules that increase shield recharge rate with modules that repair shield damage.
+
|}
  
== Shield Tanking Skill Summary ==
+
Hull tanking is onlu improved by a single skill:
The following skills are required to field a full Tech 2 Shield tank:
+
*{{sk|Hull Upgrades}}
*{{sk|Hull Upgrades}} IV: to use a Tech 2 DCU. (Optional)
+
** 5% hull HP per level. Required for damage control.
*{{sk|Energy Grid Upgrades}} IV: to fit Tech 2 Shield Power Relays and Power Diagnostic Systems.
 
*{{sk|Shield Upgrades}} IV: to fit Tech 2 Resistance Amplifier, Shield Recharger modules and fitting requirements.
 
*{{sk|Shield Operation}} V: to fit Tech 2 Shield Boosters and maximize shield recharge.
 
*{{sk|Shield Management}} V: to fit Tech 2 Shield Boost Amplifiers and maximize shield capacity.
 
*{{sk|Tactical Shield Manipulation}} IV: to fit Tech 2 Shield Hardeners and prevent damage bleed through when your shields get low.
 
  
There are seven primary shield tanking skills, and four additional shield specific skills.
+
==Remote repairing==
 +
{{main|Logistics}}
  
#{{sk|Shield Operation}} is the only Rank 1 skill in the set. It improves the natural shield recharge rate and also grants the ability to use Shield Booster modules. Tech 2 units are available between skill level III and V, depending on size.
+
Remote repairing means that the main fleet outsources the repair duty to dedicated logistic wing. This allows the main fleet to fit large buffer tank that makes them able to survive the alpha of enemy fleet. This also allows the logi wing to focus the repping power of whole fleet on single ship.
#{{sk|Shield Management}} is a companion skill to Shield Operation. It improves a ship's maximum shield amount and also grants the ability to use Shield Boost Amplifiers, which magnify the size of shield repair amount for running Shield Boosters.
 
#{{sk|Shield Upgrades}} grants access to modules that increase a ship's maximum shield amount as well as passive shield hardeners and Shield Rechargers, a module that improves the natural recharge rate of shields, while also making it easier to fit all of these modules by reducing the Power Grid requirement to fit them.
 
#{{sk|Tactical Shield Manipulation}} stops damage from bleeding through low shields into armor. More importantly it is the prerequisite for Adaptive Invulnerability Fields, the most useful shield resistance modules. The skill requires {{sk|Power Grid Management|III}} and unlocks Tech 2 Adaptive Invulnerability Fields at level IV.
 
#{{sk|Shield Compensation}} serves as a companion to active shield tanking by reducing the amount of capacitor used for each cycle for shield boosters. Available after training {{sk|Shield Operation|III}}.
 
#{{sk|Shield Emission Systems}} grants the ability to use remote shield repair modules. Tech 2 units are available between skill level III and IV, depending on size.
 
#{{sk|Shield Rigging}} allows fitting of rigs that can increase total shields, shield resistances, passive shield recharge rates, and active shield booster cycle rates. Higher levels of the skill allows use of tech 2 rigs and also reduces the signature radius penalty that those rigs incur. You'll also need the basic skill {{sk|Jury Rigging}} to fit rigs.
 
  
Training the four damage type-specific shield compensation skills is less important. The passive Shield Amplifier modules benefit most from them, but are not widely used, but active resistance modules (like Adaptive Invulnerability Fields) get no benefit at all. These skills are:
+
=== Spider Tanking ===
  
#{{sk|Thermal Shield Compensation}}
+
While normal logistic fleet configuration outsources repairing to logistic wing spider tanking shares the repairing and combat duty between the whole fleet.
#{{sk|EM Shield Compensation}}
 
#{{sk|Explosive Shield Compensation}}
 
#{{sk|Kinetic Shield Compensation}}
 
  
=== Other Skills ===
+
In simple terms, Spider tanking involves the use of a Buffer and/or highly resistant tank that is repaired remotely by other ships in your squad who are in turn repaired by remote repair modules on your ship. This is an advanced technique that requires a good deal of coordination to function effectively.
*{{sk|Energy Grid Upgrades}} provides access to modules that increase shield recharge rate as well as modules that influence the operation of the ship's capacitor. Power Diagnostic Systems, for example, are low slot modules that provide small increases to shield hit points, shield recharge rate, total capacitor capacity, capacitor recharge rate, and to powergrid available for fitting.
 
*{{sk|Capacitor Systems Operation}} and {{sk|Capacitor Management}} influence the size and recharge rate of the ship's capacitor which allows a pilot to run active shield tanks longer.
 
*{{sk|Hull Upgrades}} increases armor hit points, but also provides access to the '''Damage Control''' module, the only low slot module to affect shield resistances.
 
  
 
[[Category:Combat]]
 
[[Category:Combat]]

Revision as of 17:04, 17 December 2017

Tanking is the act of fitting a ship with modules in order to improve its defensive capabilities to resist, absorb, or mitigate incoming damage, thus preventing or delaying your ship's destruction.

Ship Status Panel

The ammount of hitpoints on your ship is represented by the Ship Status Panel - the three rings on the top of the status panel represent, from outermost to the inner ring: your ship's shield, armor and structure (also called "hull"). As you incur damage, each ring will fill with red coloring, starting with your shields, then your armor, and finally, your structure. When the structure ring is completely red, that means your hull has been breached, and your ship is destroyed - and you'll find yourself floating in space in a pod.

To avoid finding yourself floating in your pod you need to be able to tank the damage. This is generally achieved through three ways:

  • Increase ship raw HP. Generally known as buffer tanking.
  • Repair damage received. Known as active tanking. Passive shield tanking is a special case.
  • Increase damage resists. Used to increase effectiveness of both passive and active tanking.

Buffer tanking

The buffer tank is based around the principle of having high damage resistance and as many hit points as possible, thus increasing the Effective HitPoints (EHP) of the ship. The concept behind this is simple, add enough EHP to your ship to outlast your opponent through the use of active and/or passive resistance modules, which complement the HP increasing modules that add raw hit points.

This type of fitting uses a minimal amount of capacitor to run hardeners making it easily sustainable, but can be made fully passive by using only passive resistance modules instead. The primary drawback to Buffer Tanking is that you have no way to repair yourself, so when you run out of hit points you are toast.

Most common in fleet PvP, but also group PvE with logistic support (like incursions, wormhole anomalies / signatures and a few others). In PvP a fleet will overwhelm an active tank in fairly short order, whereas a buffer tank will give you more survival time. Although, some ships with faction gear and active tank bonuses can field some extremely resistant active tanks that can take on more than you might think.

The effective hitpoints are product of raw HP and resist. In general if you are expecting to have Logistical support (friends to rep your armor) then you want to buffer tank more towards resistance, because the higher your resistances the more effective logistic reps are. While if you don't expect logistical support you only care about the Effective Hit Points, so whatever combination gives you more effective hit points is the best option.

Active tanking

Active tanking is most commonly used for solo activities such as mission/complex running, ratting, and solo PvP. Active tanking differs from buffer tanking in that it uses armor repair or shield booster modules to actively repair damage done to the ship. You should be careful to include enough resistance and buffer to keep your repair modules from being overwhelmed by incoming damage; frequently this means packing resistance modules (either passive or active) that compensate for the specific types of damage you expect to be receiving.

This type of fitting takes a lot of capacitor to sustain your cap-hungry repair modules so it should ideally include modules such as cap rechargers, capacitor batteries or capcitor rigs to balance out and maintain capacitor stability.

Active Tanking uses energy from the ship's capacitor to run a local repair module. Active tanks are stronger against higher bursts of damage but tend to drain the pilot's capacitor over time resulting in the tank 'breaking' during long engagements and are vulnerable to [[Capacitor Warfare] that drains the ships capacitor dry.

Capacitor stability is important because it allows you to leave your Tank modules turned on without ever worrying about running out of capacitor. So long as incoming damage is less than what your repair modules can handle your ship should be able to sustain that level of damage indefinitely. This is commonly referred to as perma-tanking. If incoming damage exceeds your repair capacity you will gradually run out of Hit Points and die. This is commonly referred to as breaking the tank.

For PvP purposes a cap booster can be used to temporarily supplement capacitor output to allow for short bursts of heavy tanking. The primary drawback to this approach is that unlike the capacitor stable fitting described above, when you run out of charges to run your capacitor booster, you quickly run out of capacitor, your tank will fail and you will die horribly. Cap booster will also offer some safety against neuting allowing you to keep on cycling modules even when your capacitor disappears in few seconds.

Similarly, weapon systems that drain your ship's capacitor will effectively disable your active tanking modules. As above, your tank will fail and you will die horribly. In this case, the capacitor booster can be used on an otherwise capacitor stable fitting to provide emergency power to prevent being drained and destroyed.

Ancillary armor repairers and shield boosters are another way to field strong active tank for a short duration. These modules can be loaded with nanite repair paste and cap boosters. While the module has charges you will be able to tank quite massive damage but once the charges are out your repairing ability quicly disappears.

Resists

Resistance percentages are calculated in a way that many people find confusing. A module may list itself as having a 30% bonus to resistances -- but the only time you'll actually see a 30% increase in resistance when using it is if your current resistance is 0%.

The way the calculations work is that the percentage is applied to the remaining vulnerability. If things didn't work this way, you'd easily get resistances above 100%, and shooting you would cause armor to grow on your ship.

Resistances are easier to figure out if you think in damage vulnerability rather than damage resistance. A ship with 60% EM resist is better thought as a 40% damage received. Adding a 30% resist module multiplies the damage taken by 0.7 so you now take 0.7*0.4 = 0.28 = 28% of the raw damage.

Because of stacking penalties, and the way resistances multiply together, it is not possible to be 100% resistant to a damage type.

It's often more sensible to increase the resistances of your ship than to increase the total number of HP. The damage reduction of resistance modules is a constant where as the buffer reduces with each attack. The fitting requirements for resistance modules are often less than the fitting requirements for Shield Extenders and armor plates. The one drawback is stacking penalties that will inhibit the effectiveness of additional resistance modules but do not apply to Shield Extenders.

Armor tanking

Armor tanking emphasizes the use of the low slot modules increase armor hit points, resistance to damage and repair damage done to it. Regardless of the approach taken to armor tanking, it is wise to understand that armor on T1 hulls has an inherent weakness to explosive damage and plan your resistance modules accordingly. Armor tanking ships most commonly have high number of low slots to spare.

Armor tank generally has much stronger buffer than shield ships. There are more different kid of armor tanking modules than shield tanking modules, most notably energized adaptive memrane and reactive armor hardener do not have counterparts on shield.

Armor tanking modules are quite light on CPU usage but use lots of powergrid instead. Low slot using armor modules also leave all the mid slots free for various propulsion modules, electronic attack modules, capacitor modules or application modules. This freedom on mid slots makes armor tanked fits versatile. But using low slot for armor prevents you from using damage modules resulting in lower damage output.

Armor repairers are more efficient at using capacitor but on the other hand single armor repairer repairs considerably less HP than corresponding shield booster. Armor repairs also apply the repair at the end of the module cycle requiring pilot to anticipate ehwn the repair is needed.

Once your armor is gone your ship has only hull left. This leaves very little safety margin on armor ships. Combined with delayed repair cycles makes it possible for armor ships to easily die in between repair cycles.

Armor plates and armor rigs give penalty to ship mass. This reduces the speed bonus from propulsion moduls and makes the ship less agile.

Unlike shields, armor has no passive regeneration of any kind. Armor repairers are the only way to get armor back.

Armor tanking modules

Icon armor plate.png Armor plates increase the ships armor HP by a flat number. The drawback is increased mass that results in slower and less agile ship. It is somewhat common to fit oversized plates. For example 1600mm plates on a cruiser.
Icon energized membrane.png Energized armor lyering membranes are passive modules that increase ship's armor by a percentage ammount. These are rarely used as a plate and resist module are both better than this module.
Icon adaptive nano plating.png Layered platings are passive modules that increase ship's armor by a percentage ammount. These are less effective than the energized memrane variant but are much easier to fit. These are rarely used as a plate and resist module are both better than this module.
Icon armor thermal hardener.png Armor hardeners are active modules that boost one of the four armor resistances: EM, Thermal, Kinetic or Explosive.
Compared to membranes, they use capacitor (not much though) and slightly more CPU but offer a large boost in effectiveness
Icon energized membrane.png Energized membranes are passive resist modules that moderately increase the armor resists. The resist bonus is smaller than on active hardeners but greater than on resistance platings. There are damage type specific modules that increase only one resist type and an adaptive membrane that increases all resist types. The name "adaptive" is misleading and the resist bonus is static. The resist bonus is increased by corresponding Armor Compensation skill.
Icon adaptive nano plating.png Resistance platings are passive resistance modules that increase the armor resistances. They require practically nothing to fit, only 1 PG. They offer lower resist bonus than energized membranes or active hardeners. There are both type specific modules that increase only one resist type and an adaptive plating that increases all resist types. The name "adaptive" is misleading and the resist bonus is static. The resist bonus is increased by corresponding Armor Compensation skill.
Icon module damage control.png Damage control is a passive module that increases ship's shield, armor and hull resists. This module is not stacking penalized with most other resist modules. Only the reactive armor hardener is stacking penalized with damage control.
Icon reactive armor hardener.png Reactive armor hardener is a active module that increases armor resists. it gives in total 60% resist bonus split across all four damage types. When you first activate the module the resists are evenly split to 15% per damage type. As you receive armor damage the RAH will adjust its resist at the end of cycle by increasing the resist against two highest received damage types and reducing the resist against rest of the damage types. The resists shift by 6% per cycle. This module is not stacking penalized with most modules. Only the damage control is stacking penalized with this module.
Icon armor repairer i.png Armor repairers are modules that consume moderate ammount of capacitor and use that to repair the ship's armor.

The capacitor is consumed at the beginning of the cycle but the repair happens at the end of the cycle.

Icon armor repairer i.png Ancillary armor repairers are similar to normal armor repairers. These modules can be loaded with nanite repair paste to drastically increase the repair ammount. With paste the ancillary armor repairers repair considerably (1.25x) more than normal armor repairers. Each cycle consumes one unit of paste. Once the paste runs out the module can be used without paste. Without paste the ancillary armor repairers repair considerably (0.75x) less than normal armor repairers. Reloading the paste takes one minute. During this time the module can not be used. These modules are used for repairing large ammount of armor in short burst. Limited to one per ship.
Icon remote armor repair i.png Remote Armor Repair Systems consume significant ammount og capacitor to remotely repair armor on single target. The repair again happens at the end of the cycle. This can make it hard to repair targets if they die before the repair lands. Long optimal range, short falloff range. As a result the effectiveness drops rapidly if the target is beyond optimal range.
Module icon armor rig tech1.png Rigs
  • Trimark Armor Pump increases the raw HP by a percentage. Reduces maximum speed.
  • Anti-damage type rigs increase damage resist to single damage type. Reduce maximum speed.
  • Auxiliary Nano Pump increases a ship's armor repairer repair amount per cycle. Increases the power grid use for local armor reps.
  • Nanobot Accelerator speeds up armor repair module cycle times by. Again at the cost of power grid use. In theory this is more effective for active armor tanks than the Auxiliary Nano Pump, but note that shorter cycle time also results in higher capacitor use.
Icon implant hardwiring.png Implants
  • Repair Systems RS-6xx series - Slot 6 - reduces armor and hull repair systems duration by 1% to 6%, depending on model number
  • Remote Repair Sustems RA-7xx series - Slot 7 - reduces capacitor need for remote armor repair modules by 1% to 6%, depending on model number
  • Repair Proficiency RP-9xx series - Slot 9 - increases armor repair system amount by 1% to 6%, depending on model number
  • Hull Upgrades HP-10xx series - Slot 10 increases armor hit points by 1% to 6%, depending on model number
  • There is also the incredible Slave set of pirate implants.
    • This is a series of implants that fit into slots 1-6. Each provides a bonus to armor hit points, but when you fit the entire set, it provides a multiplicative total bonus of 53.63%. Unfortunately, a complete Slave set cost about 1.8 billion ISK or more.
    • There is a less expensive low-grade Slave set, which provides an aggregate bonus of 33.83% to armor hit points. These are a relative bargain at only 750 million ISK or so.
    • You can mix & match HG and LG Slave implants, for a final armor HP bonus partway in between.
Icon exile.png Exile medical booster greatly increases the ship's active armor repair ammount.


Armor Tanking Skills

Shield tanking

Shield Tanking: Focuses on maximizing your shields' ability to withstand and/or repair damage. This is the most common type of defense for ships with larger numbers of mid-slots, where most shield modules are fitted. It should be remembered that shields on T1 hulls are naturally weak to EM damage.

The range of shield modules is somewhat more limited than that of armor modules. Most notable is the lack of good passive shield hardeners. As a result even buffer fit shield ships are often vulnurable to suficiently large number of neuting.

Shield modules generally fit on mid slots. This leaves low slots for damage modules, fitting modules or piloting modules. As a result shield ships generally have higher damage output than their armored cousins. But on the other hand using mid slots for tank limits the ship fitt into more or less pure damage dealing as the tank competes with tackling, EWAR, and propulsion modules.

Shield extenders and shield rigs have penalty to the ship's signature radius. This makes it easier to hit shield ships. Shields generally also have less buffer than armor ships. This is most notable when fighting against ships larger than your own.

Unlike Armor Repairers, Shield Boosters give the boost at the beginning of the cycle time instead of at the end, meaning you can wait until you need the shields to activate the shield booster instead of activating it in anticipation of needing it, as is commonly done with armor repairers. Shield boosters also repair much faster and more than armor repairers. This comes at cost of using more capacitor.

After shields are exhausted there is still some armor and hull remaining, leaving a little more room for error.

Shields heal themselves over time at a natural recharge rate. Armor and Hull damage taken is going to sit there until it is repaired. This passive regeneration is taken to extreme on passive shield fits described below.

Passive Shield Tanking

Unlike Armor hit points, shields will recharge themselves after taking damage. The Passive Shield tank is designed to maximize this natural recharge rate without the use of active Shield Booster modules. The concept behind the Passive Shield Tank is deceptively simple: find a ship with a relatively high natural recharge rate (Shield HP / Recharge time = Average recharge rate), then add as many additional shield hit points to your ship as possible using shield extenders. Because the recharge time for a given ship is a fixed amount no matter how many points of shields you have, adding multiple shield extenders not only adds a lot of buffer, it indirectly increases the recharge rate because more Hit Points are being recharged in the same amount of time. Now add passive modules that increase the recharge rate even further, such as Shield Rechargers, Shield Power Relays and Power Diagnostic Systems; and you have a monster sized Buffer tank that regenerates very quickly without using any capacitor making your defense invulnerable to weapons that drain the capacitor. Shield Flux Coils also increase recharge rate, but should be avoided because they also lower your shield hit points, which is self defeating for the same reason adding Shield Extenders improves your recharge rate.

As the name implies, a fully passive tank does not require any modules that need to be “turned on” to function, and therefore does not require capacitor. The drawback to Passive Shield tanking is the number of modules required to pull it off, which leaves very little room to fit other useful modules such as damage improvement and tackling equipment, which makes this fitting of limited use outside of mission running and bait ships.

While this fitting is more about raw hit points than it is damage resistance adding resit modules will greatly increase the effectiveness of passive recharge. Shield resistance amplifiers can be added to provide a little damage reduction. Some people use Adaptive Invulnerability Fields and Shield Hardeners to improve damage resistance, but these are active modules that require capacitor, thus making your Passive Shield tank not quite passive any more. This can be problematic because the Shield Power Relays you depend on to increase your shield recharge rate also totally gimp your capacitor recharge rate. For this reason careful balancing is necessary to make the Passive Shield Tank effective. When done correctly, however, Passive Shield tanking can be used to handle tough missions with a single ship.

It is generally advised NOT to mix modules that increase shield recharge rate with modules that repair shield damage.

Understand Shield Recharge Rate

It is valuable to understand the mechanics for shield recharge rate. All ships have some shields, and all shields have a recharge rate so this concept applies to every ship shuttle and pod in Eve, and thus to every pilot who undocks, and is similar to the recharge rate of a ship's energy capacitor. In fact it is the same as your capacitor's recharge rate.

In a ship's information screen, on the attributes tab, under the shield heading, is listed the total shield amount of the hull, and the shield recharge time. The recharge time expresses how long it will take to go from 0% shields to roughly 98% shields when the ship is sitting idle in space and no one is repairing the shields or damaging them. That last ~2% of your shields will take much longer.

But shields do not recharge at a constant rate. Imagine a ship with a 440 shield and a shield recharge time of 440 seconds. To find out how many shield points you regain per second you might divide: 440 shields / 440 seconds = 1.0 shields per second.

That is close but not quite correct. The average shield recharge rate is going to be 1.0 shields per second but sometimes it will be higher, and sometimes it will be lower.

The actual behavior is that when the shield is near 0% or 100% it replenishes slower. The peak recharge rate will be 2.5x the average rate and will occur when the shields are damaged to 25% of shield maximum capacity.

Shield recharge rates above ~98% shield is extremely low. For ships with small shield capacity it is essentially non-existant. The shield recharge rate also drops sharply after 25%. Once shields have been damaged beyond 25% the passive tank "breaks" and the ship dies shortly.

Measured shield HP during passive recharge from zero and theoretical shield HP from formula plotted. Click to enlarge.
Shield recharge rate as function of shield HP according to the formula. Click to enlarge.

As the shield takes damage, its level goes down. In response, the rate at which it rebuilds itself goes up. The increase in shield recharge rate continues until it peaks at 25% of shield capacity. At this threshold, the default ship Health Alert noise will sound, to warn the pilot that the shield is at its recharging limit. If it continues to take more damage than it can hold, the regeneration will drop off quickly. This means if constant damage is applied, the shield will regenerate less as it becomes empty, thus making it easier to shoot the armor below it.

THE MAIN POINT: In combat the shield will recharge at an increasing rate until 25% of its capacity remains; then the rate will fall off quickly towards zero.

The math for shield regeneration is exactly the same as for the capacitor recharge rate. Two numerical attributes are required: shield capacity, and shield recharge time. These are both displayed in the ship's "show info" attributes panel in-game, below its capacity. Note that modules that refer to "recharge rate" modify the recharge time number, not the raw regeneration in HP/s.

EVE Cap Recharge Rate Diff Formula.png

...where:
C is your current shield HP.
Cmax is your maximum shield HP.
dC/dt is your current shield regeneration in HP/s.
τ is shield recharge time divided by 5.

Consequences

The fact these attributes are both set has some interesting consequences. Notably for this calculation, recharge time is not dependent on anything else, including maximum shield capacity – as you might have intuitively expected. This has the effect that if two ships have the same "recharge time" attribute, and one has more capacity, then the one with the larger capacity will get more raw HP/s regeneration, and appear to 'repair faster', despite reaching its maximum level in the same time. In simple terms, recharge is calculated by percentage first; which is then translated into HP/s of regeneration. So maximum capacity indirectly affects the amount of HP/sec regenerated, having the effect that Extender modules increase regeneration, and flux coils become much less useful compared to Rechargers or Power Relays.

Calculating Average rate

The average shield regeneration per second can be computed by dividing the shield capacity by its recharge time.

Average HP/s = Shield maximum / Recharge time

The peak recharge Rate is 250% of average shield recharge. It occurs when the capacity of the shield is at 25% of its maximum value. Shield recharge rate drops rapidly below 25% shield capacity.

Shield tanking modules

Icon shield extender.png Shield extenders increase ships shield HP by a flat number. The drawback is increased signature radius that makes the ship easier to hit. Oversized modules are often used. For example medium shield extender on a frigate.
Icon resists.png Shield hardeners are active modules that increase ship's shield resists. Adaptive invulnerablility field increases resist to all damage types but less than type specific modules. The name is misleading and the module does not adapt to damage like the reactive armor hardener. Active shield hardeners are considerably more effective than the passive shield resistance amplifiers.
Icon thermal amplifier.png Shield resistance amplifiers are passive modules that increase ship's shield resists. Easier to fit than active hardeners and do not need any capacitor. Considerably lower resist bonus compared to active hardeners. The resist bonus increases with apropriate shield compnsation skill. There is no resistance amplifier that increases all resist types like there is for armor.
Icon module damage control.png Damage control is a passive module that increases ship's shield, armor and hull resists. This module is not stacking penalized with any other shield resist module.
Icon shield recharger.png Shield power relays are passive modules that increase ship's shield recharge rate at the cost of reduced capacitor recharge rate. This module defines a passive shield tank. Since the relay modules fit in low slots, this means more Extenders may be fitted alongside them. On the other hand, this also means no low slot weapon upgrade modules for high damage. This will limit the situations where a passive tank may be used. One of the few low slot shield modules.
Icon shield recharger.png Shield flux coils are passive modules that increase ship's shield recharge rate at the cost of reduced shield capacity. The reduced shield capacity reduces the shield recharge rate but the recharge rate bonus on flux coils is larger than on power relays resulting in higher recharge rate.
Icon shield recharger.png Shield rechargers are passive mid slot modules which provide a modest increase to the shield recharge rate. If there is fitting room for shield extender then that may be a better choice.
Icon shield glow.png Shield boosters consume ship's capacitor and repair, or boost, the shields in exchange. The repair happens at the beginning of the module cycle.
Icon ancillary shield booster.png Ancillary shield booster works in the same way as a normal Shield Booster does: it transfers capacitor energy into shield HP, but it repairs a lot more shield HP per cycle than a normal Shield Booster does. Repairs around 40% more than a normal shield booster. Can be loaded with cap boosters. While the module has cap boosters loaded it uses no capacitor at all. After the cap boosters run out the ancillary shield booster uses over three times more capacitor than a normal shield booster. Reloading the cap boosters takes one minute. During this time the ancillary shield booster can not be used. The size of used cap booster has no effect. The smallest useable cap booster should always be used to maximize number of cycles. With smallest navy cap boosters the ancillary shield booster always fits 10 charges. This module is used to get very high active repair for short duration. More than one ancillary shield booster can be fitted.
Icon shield boost amplifier.png Shield boost amplifiers are passive mid slot modules that increase shield booster repair ammount by around 30%. The fitting requirements are about same as on a medium shield booster. This makes these impractical for sub battleship hulls. The repair increase is without additional capacitor usage. If capacitor is limiting then a boost amplifier can be used instead of second shield booster.

Doubles the module damage from overheating.

File:RemoteShieldBoostIcon.png Remote shield boosters use capacitor to repair shields of a single target. You must target lock the ship to be repaired, and that your cannot repair your own ship with a remote shield booster.
Icon powergrid.png Power diagnostics systems are low slot engineering modules. Small percentage increase to shield capacity, capacitor capacity, powergrid output, shield recharge rate and capacitor recharge rate.
Icon capacitor recharger.png Capacitor power relaysare not exactly a shield modules. Passive low slot engineering modules that increase capacitor recharge rate at the expense of reduced shield booster repair ammount. Thse modules are generally avoided on active shield tanked ships. The penalty does not apply to remote shield boosters.
Module icon shield rig tech1.png Rigs
  • Core defense field extenders increase shield capacity by a percentage ammount.
  • Core defense field purgers increase the shield recharge rate. It is however, a lot more effective than a Shield Recharger, and is a staple on almost all passively-tanked ships.
  • Screen Reinforcers increases a ship resistance to single type of damage. The most commonly used is the anti-EM and anti-thermal reinforcers as the shields are naturally vulnurable to these damage types.
  • Core defense capacitor safeguards make a shield booster run more efficiently reducing the cap requirement
  • Core defense operational solidifiers make the shield boosters run faster, increasing tank but also capacitor use. Unlike its armour equivalent, usually ignored in favour of a boost amplifier module.
  • Core defense charge economizers reduce the powergrid need of shield extenders. Rarely used except in some very large buffers to pvp fits. Much cheaper than the general PG upgrade rig.
  • For active shield fits capacitor will be a major concern and many will rely on a capacitor control circuit I to make the tank work.
Icon implant hardwiring.png Implants
  • Slot 6: Zainou 'Gnome' Shield Upgrades SU-6XX series reduces shield extender powergrid needs by a few %. Rarely used.
  • Slot 7: Zainou 'Gnome' Shield Management SM-7XX series bonus to shield capacity. Useful for buffer and passive tanks.
  • Slot 8: Zainou 'Gnome' Shield Emission Systems SE-8XX series reduced capacitor need for remote shield repair equipment. Useful for logistics fits.
  • Slot 9: Zainou 'Gnome' Shield Operation SP-9XX series increases shield recharge rate. useful for passive tanks.
  • You can also pick up the 'Crystal' pirate implant set for a large amount of ISK. This is a set of 6 implants that fit in slots 1-6, and taken together will increase your active shield boosting rates to fantastic levels. The 'Crystal' set comes in high-grade, mid-grade, and low-grade versions, low-grade being for the poor people out there that can't afford the real deal. You can mix and match from different grade sets for a final boost bonus somewhere in between the two values stated on the presentation.
Icon blue pill.png Blue Pill medical booster greatly increases the ship's active shield boosting ammount.


Shield skills

The following skills are required to field a full Tech 2 Shield tank:

  • Shield Management
    • 5% increase in shield capacity per level.
    • Required for shield boost amplifiers.
  • Shield Upgrades
    • 5% reduction in shield extener PG usage.
    • Required for resistance amplifier, shield recharger modules.
  • Shield Operation
    • 5% reduction in shield recharge time per level.
    • Required for shield boosters and maximize shield recharge.
  • Tactical Shield Manipulation
    • Reduces damage bleeding to armor through shields-.
    • Required for shield hardeners. No good reason for training beyond IV unless you want to use certain capital modules.

Hull tanking

Hull tanking is known as the manliest form of tanking. With hull tanking there is no safety buffer. Once your hull tank is gone your ship goes out in gloriour explosion. Additionally the incoming damage slowly bleeds into the ship's modules making it unwise to hull tank for long period of time. Not that you could maintain hull tank anyways since all active hull repair methods are laughably slow. Even the T2 hull repairers have staggering 24 second cycle time.

Regardless of these disatvantages hull tank is sometimes used uninorically. A bait ship with hull tank can lull the gankers into false feel of victory as they see the shields and armor waning away, only to spend ages grinding down the hull. Gallente ships like Brutix have notablu high ammount of hull HP on the hull making them viable at hull tanking.

As all the practically useful hull tanking modules are passive there is nothing that neuting can do to this type of tank.

Icon reinforced bulkhead.png Reinforced bulkheads give a percentage bonus to hull HP. These are the only modules taht increase hull HP.
Icon module damage control.png Damage control increases ship's hull resist to all damage.
Icon hull repairer i.png Hull repairers use capacitor to repair hull. These modules are extremely slow and can not be practically used in combat.
Icon remote hull repair i.png Remote hull repairers allow you to remotely repair hull on another ship. These modules are extremely slow and can not be practically used in combat. No ship is bonused for using these modules.
Module icon armor rig tech1.png Transverse bulkheads give a large percentage bonus to hull HP. No other rig gives any bonuses to hull.

Hull tanking is onlu improved by a single skill:

Remote repairing

Main article: Logistics

Remote repairing means that the main fleet outsources the repair duty to dedicated logistic wing. This allows the main fleet to fit large buffer tank that makes them able to survive the alpha of enemy fleet. This also allows the logi wing to focus the repping power of whole fleet on single ship.

Spider Tanking

While normal logistic fleet configuration outsources repairing to logistic wing spider tanking shares the repairing and combat duty between the whole fleet.

In simple terms, Spider tanking involves the use of a Buffer and/or highly resistant tank that is repaired remotely by other ships in your squad who are in turn repaired by remote repair modules on your ship. This is an advanced technique that requires a good deal of coordination to function effectively.