Difference between revisions of "User:Hirmuolio Pine/sandbox2"

From EVE University Wiki
Jump to: navigation, search
Line 1: Line 1:
 +
 +
With \displaystyle vs withou:
  
 
<math>\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)</math>
 
<math>\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)</math>
Line 5: Line 7:
  
  
 +
With \Large vs without:
  
<math>\displaystyle Chance\ to\ hit = 0.5^{\Large \left( \left( \frac{Angular \times 40000}{Tracking \times Signature} \right)^2 + \left(\frac{\max(0,\ Distance - Optimal)}{Falloff} \right)^2\right)}</math>
+
<math>\displaystyle\text{Chance to hit} = 0.5^{\Large \left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math>
 
 
<math>\displaystyle\text{Chance to hit} = 0.5^{\Large \left( \left( \frac{\text{Angular} \times 40000}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math>
 
 
 
<math>\displaystyle\text{Chance to hit} = 0.5^{\left( \left( \frac{\text{Angular} \times 40000}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math>
 
  
<math>\text{Chance to Hit} = {0.5^{\left({\left({\frac{V_{angular} \times 40000m}{WAS \times sig_{target}}}\right)^{2} + \left({\frac{max(0, Distance - opt_{turret})}{fall_{turret}}}\right)^{2}}\right)}}</math>
+
<math>\displaystyle\text{Chance to hit} = 0.5^{\left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math>

Revision as of 18:29, 12 January 2020

With \displaystyle vs withou:

[math]\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)[/math]

[math]\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)[/math]


With \Large vs without:

[math]\displaystyle\text{Chance to hit} = 0.5^{\Large \left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}[/math]

[math]\displaystyle\text{Chance to hit} = 0.5^{\left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}[/math]