|
|
| Line 352: |
Line 352: |
|
| |
|
| Every module has a certain amount of hitpoints (visible in its Show Info panel as <code>Structure Hitpoints</code>). In almost all cases, this value is 40HP, however for certain capital ship modules like Doomsday Weapons the value is in stead 99999HP or 999999HP (indicating that these modules effectively cannot be burned out by other modules' heat damage). If a module sustains heat damage exceeding its structure hitpoints, the module will 'burn out', and be forcibly set offline. A burned out module cannot be repaired with Nanite Repair Paste, and cannot be set online again or activated until it has been repaired. However, burned out modules are ''not'' destroyed or otherwise lost. Ideally, burned out modules should be repaired via a starbase or structure repair shop, however if a burned out module is partially repaired by being Tethered to an Upwell Structure, it can be brought online again while still in space. Burned out modules do not automatically re-online after being repaired; they must be manually reactivated. | | Every module has a certain amount of hitpoints (visible in its Show Info panel as <code>Structure Hitpoints</code>). In almost all cases, this value is 40HP, however for certain capital ship modules like Doomsday Weapons the value is in stead 99999HP or 999999HP (indicating that these modules effectively cannot be burned out by other modules' heat damage). If a module sustains heat damage exceeding its structure hitpoints, the module will 'burn out', and be forcibly set offline. A burned out module cannot be repaired with Nanite Repair Paste, and cannot be set online again or activated until it has been repaired. However, burned out modules are ''not'' destroyed or otherwise lost. Ideally, burned out modules should be repaired via a starbase or structure repair shop, however if a burned out module is partially repaired by being Tethered to an Upwell Structure, it can be brought online again while still in space. Burned out modules do not automatically re-online after being repaired; they must be manually reactivated. |
|
| |
| === Module Heat Damage Odds ===
| |
|
| |
| As was mentioned, modules being overheated can, but may not always, deal heat damage to themselves and other modules. The odds of this happening is based on several factors:
| |
|
| |
| * The '''Rack Heat''' of the rack being overheated. As Rack Heat rises, the odds of heat damage instances occurring increases, and the odds of larger numbers of modules being damaged by one proc increases. In the past, this was erroneously believed to be a simple 1-4 multiplier on the number of modules that could be damaged at once, but in reality it acts as a percentage chance for a given module to receive heat damage, after the results of the other factors. (It is theoretically possible for every single module in a rack to be damaged by a single overheat cycle, however in practice this is highly unlikely.)
| |
| * The '''placement of modules''' in the rack. Modules that are being overheated have the highest chance to deal heat damage instances to themselves and to immediately adjacent modules. Every additional module slot of distance away from an overheating module reduces the chances of that other module being damaged, to the point that modules on opposite ends of a rack have the lowest chances to damage each other. If a module is on the far end of a rack, or has only empty slots to one side of it, it may attempt to deal heat damage to the nonexistant modules off the end of the rack, which will result in the module itself erroneously flashing to indicate heat damage being dealt, and no heat damage actually being dealt in that direction. The result of this is that in a rack where only a small number of modules will be overheated, the best slots to place those modules is either on one far end (for one overheating module), opposite far ends (for two), or as evenly spaced across the rack as possible (for more); and the worst slots to place overheating modules in is either the center of the rack (causing it to damage all other modules in the rack) or adjacent to another to-be-overheated module (as they will damage and burn each other out). Note that these module placements apply to the fitting screen, not the hotbar; the placement of module buttons on the hotbar does not matter.
| |
| * The number of '''Online''', versus '''Offline''' or '''Empty''', slots in the ship. The odds for any module to sustain overheat damage is based on the total number of Online modules on the ship, divided by the total number of high, mid, low, ''and rig'' slots on the ship. (Rigs do not count as online modules for this calculation.) This means that having one or more module slots on a ship empty, or one or more modules Offline, will reduce the chances of all modules on the ship sustaining heat damage. It also means that there is always a chance for an overheated module to not take damage on every heat cycle.
| |
| * The '''ship''', and the hidden '''heatAttenuation''' value for the rack. Every ship hull has three hidden attributes (named <code>heatAttenuationHi</code>, <code>heatAttenuationLow</code>, and <code>heatAttenuationMid</code>). In general, the values of these attributes correspond to the number of slots in the rack, with the numbers being higher for racks with more slots; however there are a small number of ships which have received balance changes to their slot counts but not had their attenuation values changed. Higher values of these attributes represent greater chances for heat damage to spread across adjacent modules down the rack. The value of the attribute is a decimal chance for the heat to spread to each further module, meaning that the chance for a given module to receive heat damage is equal to the <code>heatAttenuation</code> factor, raised to the power of the distance (in slots) between the overheated module and the module being damaged.
| |
|
| |
|
| === Heat Attenuation Values === | | === Heat Attenuation Values === |