Toggle menu
Toggle preferences menu
Toggle personal menu
Not logged in
Your IP address will be publicly visible if you make any edits.

Warp: Difference between revisions

From EVE University Wiki
Added basic information about ship warp speed attribute
Proton One (talk | contribs)
No edit summary
Line 18: Line 18:
Total time in warp is given by:
Total time in warp is given by:


:<math>t_{total} = t_{accel} + t_{decel} + t_{cruise}</math>
:<math>t_\text{total} = t_\text{accel} + t_\text{decel} + t_\text{cruise}</math>


==Long warps==
==Long warps==
Line 30: Line 30:
:<math>
:<math>
\begin{align}
\begin{align}
d & = e^{kt} \\
d & = e^{kt}\\
v & = k*e^{kt}\\
v & = k*e^{kt}\\
v_{warp} & = k * a\\
v_\text{warp} & = k * a\\
\end{align}
\end{align}
</math>
</math>
Line 42: Line 42:
:<math>
:<math>
\begin{align}
\begin{align}
d & = e^{kt} \\
d & = e^{kt}\\
v & = k*e^{kt}\\
v & = k*e^{kt}\\
& = k*d\\
& = k*d\\
\therefore d & = \frac{v}{k}
\therefore\quad d & = \frac{v}{k}
\end{align}
\end{align}
</math>
</math>
Line 53: Line 53:
:<math>
:<math>
\begin{align}
\begin{align}
d_{accel} & = \frac{v_{warp}}{k}
d_\text{accel} & = \frac{v_\text{warp}}{k}\\
& = \frac{k*a}{k}
& = \frac{k*a}{k}\\
& = a
& = a
\end{align}
\end{align}
Line 69: Line 69:
v & = k*e^{kt}\\
v & = k*e^{kt}\\
\frac{v}{k} & = e^{kt}\\
\frac{v}{k} & = e^{kt}\\
kt & = \ln{(\frac{v}{k})}\\
kt & = \ln{\left(\frac{v}{k}\right)}\\
t & =\frac{\ln{(\frac{v}{k})}}{k}\\
t & =\frac{\ln{\left(\frac{v}{k}\right)}}{k}\\
\end{align}
\end{align}
</math>
</math>
Line 78: Line 78:
:<math>
:<math>
\begin{align}
\begin{align}
v_{warp} & = k * a\\
v_\text{warp} & = k * a\\
t_{accel} & = \frac{\ln{(\frac{v_{warp}}{k})}}{k}\\
t_\text{accel} & = \frac{\ln{\left(\frac{v_\text{warp}}{k}\right)}}{k}\\
\end{align}
\end{align}
</math>
</math>
Line 90: Line 90:
There is a complication with deceleration calculations. Ships do not drop out of warp at 0 m/s. Instead, they drop out of warp at ''s'' m/s, after which normal sub-warp calculations take over.
There is a complication with deceleration calculations. Ships do not drop out of warp at 0 m/s. Instead, they drop out of warp at ''s'' m/s, after which normal sub-warp calculations take over.


:<math>s = \min(100, v_{subwarp}/2)</math>
:<math>s = \min\left(100, \frac{v_\text{subwarp}}{2}\right)</math>


Where v<sub>subwarp</sub> is the maximum subwarp velocity of the ship; this varies greatly depending on the ship hull and pilot skills.
Where ''v''<sub>subwarp</sub> is the maximum subwarp velocity of the ship; this varies greatly depending on the ship hull and pilot skills.




Line 101: Line 101:
\begin{align}
\begin{align}
v & = k * e^{jt}\\
v & = k * e^{jt}\\
d & = \int_{0}^{t}k*e^{j⋅dx}\,dx = \frac{k*e^{jt}}{j}\\
d & = \int_{0}^{t}k*e^{j\cdot dx}\,dx = \frac{k*e^{jt}}{j}\\
  & = \frac{v}{j}
  & = \frac{v}{j}
\end{align}
\end{align}
Line 110: Line 110:
:<math>
:<math>
\begin{align}
\begin{align}
d_{decel} & = \frac{v_{warp}}{j}
d_\text{decel} & = \frac{v_\text{warp}}{j}\\
= \frac{k*a}{j}
& = \frac{k*a}{j}
\end{align}
\end{align}
</math>
</math>
Line 125: Line 125:
v &= k*e^{jt}\\
v &= k*e^{jt}\\
\frac{v}{k} & = e ^ {jt}\\
\frac{v}{k} & = e ^ {jt}\\
t & = \frac{\ln{(\frac{v}{k})}}{j}
t & = \frac{\ln{\left(\frac{v}{k}\right)}}{j}
\end{align}
\end{align}
</math>
</math>
Line 133: Line 133:
:<math>
:<math>
\begin{align}
\begin{align}
t_{decel} & = t_{decel\_warp} - t_{decel\_s}\\
t_\text{decel} & = t_{\text{decel}\_\text{warp}} - t_{\text{decel}\_s}\\
& = \frac{\ln{(\frac{v_{warp}}{k})}}{j} - \frac{\ln{(\frac{s}{k})}}{j}\\
& = \frac{\ln{\left(\frac{v_\text{warp}}{k}\right)}}{j} - \frac{\ln{\left(\frac{s}{k}\right)}}{j}\\
& = \frac{\ln{(\frac{v_{warp}}{k})} - \ln{(\frac{s}{k})}}{j}\\
& = \frac{\ln{\left(\frac{v_\text{warp}}{k}\right)} - \ln{\left(\frac{s}{k}\right)}}{j}\\
& = \frac{\ln{v_{warp}} - \ln{k} - \ln{s} + \ln{k}}{j}\\
& = \frac{\ln{v_\text{warp}} - \ln k - \ln s + \ln k}{j}\\
& = \frac{\ln{v_{warp}} - \ln{s}}{j}\\
& = \frac{\ln{v_\text{warp}} - \ln s}{j}\\
& = \frac{\ln{(\frac{v_{warp}}{s})}}{j}
& = \frac{\ln{\left(\frac{v_\text{warp}}{s}\right)}}{j}
\end{align}
\end{align}
</math>
</math>
Line 147: Line 147:
The distance covered while cruising is the total warp distance minus any distance covered while accelerating or decelerating.
The distance covered while cruising is the total warp distance minus any distance covered while accelerating or decelerating.


:<math>d_{cruise} = d_{total} - d_{accel} - d_{decel}</math>
:<math>d_\text{cruise} = d_\text{total} - d_\text{accel} - d_\text{decel}</math>


For all but the fastest ships, this will be ''d<sub>total</sub> - 4 AU''.
For all but the fastest ships, this will be ''d''<sub>total</sub> &minus; 4 AU''.




Line 155: Line 155:
Time spent cruising is:
Time spent cruising is:


:<math>t_{cruise} = \frac{d_{cruise}}{v_{warp}}</math>
:<math>t_\text{cruise} = \frac{d_\text{cruise}}{v_\text{warp}}</math>


==Short Warps==
==Short Warps==
The above calculations work as long as some time is spent at maximum warp speed; <math>d_{total} \geq d_{accel} + d_{decel}</math>. If the warp is short enough that the ship never reaches top speed, a different set of calculations are needed.
The above calculations work as long as some time is spent at maximum warp speed; <math>d_\text{total} \geq d_\text{accel} + d_\text{decel}</math>. If the warp is short enough that the ship never reaches top speed, a different set of calculations are needed.


:<math>
:<math>
\begin{align}
\begin{align}
d_{accel} & = \frac{v_{max}}{k}, d_{decel} = \frac{v_{max}}{j}\\
d_\text{accel} & = \frac{v_\text{max}}{k}, d_\text{decel} = \frac{v_\text{max}}{j}\\
d_{total} & = d_{accel} + d_{decel} = v_{max}(\frac{1}{k} + \frac{1}{j})\\
d_\text{total} & = d_\text{accel} + d_\text{decel} = v_\text{max}\left(\frac{1}{k} + \frac{1}{j}\right)\\
v_{max} & = \frac{d_{total}*k*j}{k + j}
v_\text{max} & = \frac{d_\text{total}*k*j}{k + j}
\end{align}
\end{align}
</math>
</math>
Line 172: Line 172:
:<math>
:<math>
\begin{align}
\begin{align}
t_{accel} & = \frac{\ln{(\frac{v_{max}}{k})}}{k}\\
t_\text{accel} & = \frac{\ln{\left(\frac{v_\text{max}}{k}\right)}}{k}\\
t_{decel} & = \frac{\ln{(\frac{v_{max}}{s})}}{j}\\
t_\text{decel} & = \frac{\ln{\left(\frac{v_\text{max}}{s}\right)}}{j}\\
t_{total} & = t_{accel} + t_{decel}
t_\text{total} & = t_\text{accel} + t_\text{decel}
\end{align}
\end{align}
</math>
</math>