Difference between revisions of "User:Hirmuolio Pine/sandbox2"

From EVE University Wiki
Jump to: navigation, search
Line 9: Line 9:
 
With \Large vs without:
 
With \Large vs without:
  
<math>\displaystyle\text{Chance to hit} = 0.5^{\Large \left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math>
+
<math>\text{Chance to hit} = 0.5^{\Large \left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math>
  
<math>\displaystyle\text{Chance to hit} = 0.5^{\left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math>
+
<math>\text{Chance to hit} = 0.5^{\left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math>

Revision as of 18:30, 12 January 2020

With \displaystyle vs withou:

[math]\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)[/math]

[math]\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)[/math]


With \Large vs without:

[math]\text{Chance to hit} = 0.5^{\Large \left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}[/math]

[math]\text{Chance to hit} = 0.5^{\left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}[/math]