|
|
| Line 1: |
Line 1: |
| | :<math>\displaystyle\text{Chance to hit} = 0.5^{\Large \left( \left( \frac{\text{Angular} \times 40000 \,\text{m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math> |
|
| |
|
| == With \displaystyle vs withou:==
| | :<math>\text{Chance to hit} = 0.5^{\LARGE\left( \left( \frac{ \omega \times 40000 \,\text{m}}{ T \times S } \right)^2 + \left(\frac{\max(0,\ D - O )}{ F } \right)^2\right)}</math> |
| | |
| <math>\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)</math>
| |
| | |
| <math> \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)</math>
| |
| | |
| | |
| == With \Large vs without:==
| |
| | |
| <math>\text{Chance to hit} = 0.5^{\Large \left( \left( \frac{\text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math>
| |
| | |
| <math>\text{Chance to hit} = 0.5^{ \left( \left( \frac{ \text{Angular} \times 40000 \text{ m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math> | |
| | |
| == Roman VS italic ==
| |
| | |
| <math>\displaystyle\text{Chance to hit} = 0.5^{\Large \left( \left( \frac{\text{Angular} \times 40000 \,\text{m}}{\text{Tracking} \times \text{Signature}} \right)^2 + \left(\frac{\max(0,\ \text{Distance} - \text{Optimal})}{\text{Falloff}} \right)^2\right)}</math>
| |
| | |
| <math>\displaystyle Chance\ to\ hit = 0.5^{\Large \left( \left( \frac{Angular \times 40000 \,\text{m}}{ Tracking \times Signature } \right)^2 + \left(\frac{\max(0,\ Distance - Optimal )}{ Falloff } \right)^2\right)}</math>
| |