More actions
Just wanted to add a practical meaning section, providing two examples as to how these three velocities relate to Eve movement. |
m Remove category |
||
| Line 1: | Line 1: | ||
{{New Work in Progress}} | {{New Work in Progress}} | ||
This page will explain the meaning of three kinds of variables related to velocity. Velocity itself can be described as the vector, i.e. both a magnitude (speed) and direction, by which an object in motion moves. In EVE, velocity is almost always in units of meters per second (m/s). This is often displayed as a scalar quantity, which can be misleading or confusing since they really mean speed in most cases. For the purposes of EVE, we will relax this formalism to aid in understanding and simply say that '''velocity is the speed of an object'''. | |||
This | |||
It is important to note that radial, transversal, and angular velocity are the same for both you and an object. For example, if you have a transversal velocity of 500 m/s with respect to another player's ship, then he also has a 500 m/s transversal velocity with respect to your ship. | It is important to note that radial, transversal, and angular velocity are the same for both you and an object. For example, if you have a transversal velocity of 500 m/s with respect to another player's ship, then he also has a 500 m/s transversal velocity with respect to your ship. | ||
== Radial Velocity == | |||
Radial velocity describes in EVE the speed at which the distance between you and the object changes. If the distance between you and the object increases, then the value is positive. If the distance between you and the object decreases, then the value is negative. In other words, as you move toward the object, both you and it have a negative radial velocity. | Radial velocity describes in EVE the speed at which the distance between you and the object changes. If the distance between you and the object increases, then the value is positive. If the distance between you and the object decreases, then the value is negative. In other words, as you move toward the object, both you and it have a negative radial velocity. | ||
| Line 14: | Line 10: | ||
Just to provide another explanation, consider a sphere centered at your ship so that the object is on the surface of the sphere. As you and the object move around, the sphere follows you and also adjusts its size. The speed at which the sphere's size changes is determined by its radius, hence the term "radial" velocity. | Just to provide another explanation, consider a sphere centered at your ship so that the object is on the surface of the sphere. As you and the object move around, the sphere follows you and also adjusts its size. The speed at which the sphere's size changes is determined by its radius, hence the term "radial" velocity. | ||
== Transversal Velocity == | |||
Transversal velocity in EVE describes the speed at which an object moves perpendicular to you, i.e. its orbital velocity. In other words, it is a metric used to describe the sideways movement of you and an object relative to one another. To get an sense of what this means, below is a list of some examples. | Transversal velocity in EVE describes the speed at which an object moves perpendicular to you, i.e. its orbital velocity. In other words, it is a metric used to describe the sideways movement of you and an object relative to one another. To get an sense of what this means, below is a list of some examples. | ||
| Line 30: | Line 26: | ||
The transversal velocity is computed by subtracting the two velocity vectors (i.e. both magnitude and direction) from one another, and then finding the length of the vector. This differs from angular velocity (below) in that it is not affected by the distance between both objects. | The transversal velocity is computed by subtracting the two velocity vectors (i.e. both magnitude and direction) from one another, and then finding the length of the vector. This differs from angular velocity (below) in that it is not affected by the distance between both objects. | ||
== Angular Velocity == | |||
Angular velocity describes in EVE the speed at which you and an object rotate around each other. It is measured in radians per second. For example, if you have an angular velocity at 6.283 rad/sec, then you are orbiting a full circle every second (since 6.283 = 2 * PI). Angular velocity has a very important relationship with transversal velocity. | Angular velocity describes in EVE the speed at which you and an object rotate around each other. It is measured in radians per second. For example, if you have an angular velocity at 6.283 rad/sec, then you are orbiting a full circle every second (since 6.283 = 2 * PI). Angular velocity has a very important relationship with transversal velocity. | ||
| Line 38: | Line 34: | ||
People often debate between using either transversal or angular velocity in an overview setup. Both variables display similar information; however, angular velocity is much more useful in practice, due to its use in turret to-hit calculations. It essentially allows for an easy comparison between your (or your opponent's) turret's tracking speed and the angular velocity. If the angular velocity is greater then the turret's tracking speed, you'll begin to miss, but having a smaller angular velocity than the turret's tracking speed means maximizing the hit chance. | People often debate between using either transversal or angular velocity in an overview setup. Both variables display similar information; however, angular velocity is much more useful in practice, due to its use in turret to-hit calculations. It essentially allows for an easy comparison between your (or your opponent's) turret's tracking speed and the angular velocity. If the angular velocity is greater then the turret's tracking speed, you'll begin to miss, but having a smaller angular velocity than the turret's tracking speed means maximizing the hit chance. | ||
== Practical Meaning == | |||
Due to the mechanics of [[Turret Damage]], velocity plays a large role in determining the probabilty of successfully hitting targets. Knowing how to control your shared velocity variables can be a huge advantage in a fight. For example, the reason that frigates can tackle battleships and survive is due to the relation between the high angular velocity and the battleship's turret's low tracking speeds. Also, the rate at which a ship is closing in on another is determined by its radial velocity. By balancing radial velocity with transversal/angular velocity can help you pull range or close in on a target, while still being able to survive. Next, we'll look at two expanded examples to further explain these concepts and relate it to Eve. | Due to the mechanics of [[Turret Damage]], velocity plays a large role in determining the probabilty of successfully hitting targets. Knowing how to control your shared velocity variables can be a huge advantage in a fight. For example, the reason that frigates can tackle battleships and survive is due to the relation between the high angular velocity and the battleship's turret's low tracking speeds. Also, the rate at which a ship is closing in on another is determined by its radial velocity. By balancing radial velocity with transversal/angular velocity can help you pull range or close in on a target, while still being able to survive. Next, we'll look at two expanded examples to further explain these concepts and relate it to Eve. | ||