Difference between revisions of "Tanking"
Salartarium (talk | contribs) m (Eve -> EVE per UniWiki:Manual of Style) |
Arikko Erata (talk | contribs) m (→Hull tanking) |
||
Line 508: | Line 508: | ||
Hull tanking is improved by only a single skill: | Hull tanking is improved by only a single skill: | ||
− | *{{sk| | + | *{{sk|Mechanics}} |
** 5% hull HP per level. Required for damage control. | ** 5% hull HP per level. Required for damage control. | ||
Revision as of 14:17, 3 April 2022
The modules fitted to a ship to bolster its defences are often called its tank. Tanking means fitting a ship with modules in order to improve its defensive capabilities to resist, absorb, or mitigate incoming damage, thus preventing or delaying the ship's destruction.
Tanking is a core part of most ship combat in EVE Online, important to both PvP and PvE activities—though the two types of combat require broadly different tank approaches. Understanding how your ship and other ships avoid or deal with damage is an important part of successful play for anyone involved in combat, and new players usually learn about tanking gradually as they settle into the game. This page details the main approaches to tanking; if you're new, don't be daunted by the details! You don't have to learn it all at once. EVE University members should feel encouraged to ask more experienced corpmates questions about tanking in game or in the #fitting-chat channel on the University discord.
Fittings and styles of piloting which avoid damage are sometimes called tanking: pilots might refer, for instance, to "speed tanking" and "signature tanking". It is worth growing to understand these techniques, but this page focuses on dealing with damage which has affected your ship's hitpoints, rather than avoiding damage altogether.
Basic concepts
The amount of hitpoints on your ship is represented by the Ship Status Panel. The three rings on the top of the status panel represent, from outermost to the innermost semicircle,
- shield (outermost semicircle)
- armor (middle semicircle)
- and structure (also called "hull"; inner semicircle)
As you incur damage, each ring will fill with red coloring, starting with your shields, then your armor, and finally your structure. When the structure ring is completely red, your hull has been breached, and your ship is destroyed—and you'll find yourself floating in space in a pod.
To avoid finding yourself floating in your pod, you need to be able to tank the damage. This is generally achieved through one of three approaches:
- Increasing the ship's raw HP. This is generally known as "buffer tanking".
- Repairing damage received. This is known as "active tanking".
- Increasing damage resists. Higher resistance to damage strengthens any type of tank.
One special subtype of the "repair" approach, passive shield tanking, falls somewhat outside of this categorization, and will be discussed in more detail below.
Discussions of tanking often invoke "EHP". This means "effective hit points", and refers to the effective hit points that your ship has when its resistance to damage is taken to account alongside its raw hit points.
Buffer tanking
A "buffer tank" tries to have high damage resistances and as many hit points as possible, thus increasing the EHP of the ship. The concept behind this is simple: outlast your opponent through the use of modules which boost your raw hit points, and modules which increase your resistance to damage.
This type of tank uses either no capacitor at all, or a minimal amount of capacitor used to run hardeners. This makes it easily sustainable. It also puts a lower cognitive load on pilots in combat: very little module management is necessary, freeing up a pilot's attention for other matters. The primary drawback to Buffer Tanking is that you have no way to repair yourself, so when you run out of hit points you are toast.
Buffer tanks are most commonly fitted for PvP combat. In fleet PvP, the rate of incoming damage can often exceed any possible active tank, making a buffer tank a more useful option. Since buffers cannot sustain damage over a long period, they are ill-suited to the kind of PvE combat found in missions and in challenges such as Abyssal Deadspace. In some forms of group PvE, however, players use buffer tanks and logistics support together: this is common in Incursions and in wormhole PvE battles.
In general, if you are expecting to have logistics support, then you want to tilt your buffer tank more towards resistance rather than raw HP, because the higher your resistances, the more effective logistics reps are. While if you don't expect logistical support, you only care about the EHP, so whatever combination of raw HP and resistances gives you more effective hit points is the best option.
Active tanking
An "active tank" uses armor repair or shield booster modules to restore damage done to the ship, "actively". Active tanks use energy from the ship's capacitor to run local armor-repairing or shield-boosting modules. So long as the incoming damage never exceeds your restoration capacity and your capacitor never gives out under the pressure, an active tank can last forever ("perma-tanking"). If either of these two things happens, your tank will collapse ("break") under the pressure.
Active tanks can achieve either high burst restoration or sustained restoration over a long (potentially endless) time period. They require more management from the pilot than buffer tanks, and are often vulnerable to Capacitor Warfare that drains the ship's capacitor dry.
Sustained active tanks
In PvE, players usually need a permanent tank that can consistently restore a steady stream of moderate damage, forever.
A PvE active tank uses one or more armor repairers or shield boosters, modules to boost either shield or armor resistances to damage, and modules to support the recharging of the ship's capacitor so that the rest of the tank can keep on running. For most PvE combat, players can look up ahead of time what types of damage they are likely to receive, and will fit modules which harden their resistances against that type of damage in particular.
Sustained active tanks are rare in PvP.
Burst active tanks
Though fleet PvP can deliver incoming damage beyond the capacity of any subcapital sustained active tank, solo and small gang PvP often involves lower incoming damage, which a short-term active tank can fend off. The modules central to this tactic are Ancillary Armor Repairers (AAR) and Ancillary Shield Boosters (ASB). These modules can be loaded with Nanite Repair Paste (armor) and Cap Boosters (shield). While these modules have charges, ancillary armor repairers repair far more hitpoints than any other repair module, and ancillary shield boosters consume 0 capacitor to cycle.
However, once their charges run out (in general after 8 cycles for an armor repairer or 9 cycles for a shield booster), the AAR becomes very weak and inefficient, and the ASB becomes prohibitively capacitor-intensive. Ancillary repair modules have a 60 second reload time to refresh their charges from your cargo hold. Only one ancillary armor repairer, or capital ancillary shield booster, can be fitted to a ship.
The size of charges used and the rate at which they are consumed is based on the size of the module. Larger ancillary armor repairers hold more paste, but consume more paste per cycle, and larger ancillary shield boosters require larger cap charges to be loaded. While ancillary shield boosters may have multiple different sizes of charges loaded, larger charges offer no benefit over smaller charges (and with their larger volume, allow fewer charges to be loaded at once), and so only the smallest available charge should be used.
Because Overheating repair modules increases both the cycle speed and the amount of hitpoints repaired, ancillary repair modules should always be run overheated to maximize the value of their limited cycles. (The overheat damage sustained can then be repaired while the modules are reloading.)
Another module often important to a burst active tank is the capacitor booster. A cap booster uses charges to fire more energy into your capacitor, allowing a ship to exceed its normal power output for a limited time. Ancillary repairers/boosters and cap boosters offer some protection against capacitor warfare, and a burst active tank can achieve a startlingly-high rate of restoration, especially on a ship with bonuses like those found on the Maelstrom or Hyperion.
The drawbacks of a burst active tank are that it requires considerable attention from the pilot, takes up a lot of cargo space, and (most importantly) will eventually give out.
Avoid mixing tanks
Modules are available to help both your shields and your armor, but it is a good rule of thumb to focus on either shields or armor, not both.
Most of the time a tank takes up a substantial proportion of powergrid, CPU and either midslots (shield tank) or lowslots (armor tank). If you fit a shield tank, you can put useful things (damage modules, speed and agility modules &c) in your lowslots, and if you armor tank you can put useful things (tackling modules, electronic warfare modules, propulsion modules &c) in your midslots. Both types of tank at once leave you with little space for other useful modules.
This rule also applies to mixing buffer tank with active tank. Buffer and active tank modules both require heavy powergrid and CPU, both consume the same limited set of slots, and both fitting theories satisfy different, usually mutually exclusive, goals and conditions.
Double-tanked ships are usually only used as specially-designed bait.
Resistances
Resistances (or "resists) on a ship reduce the damage taken. A resist figure is number that tells you by how large a percentage the incoming damage is reduced. For example, 30% thermal resistance on shields means that all incoming thermal damage is reduced by 30%: 100 hit points of shield damage becomes 70.
The T1 ships have almost identical base resists, but many of the T2 ships have so called "T2 Resists" that drastically vary between races. For example, Minmatar ships with T2 resists have massive EM and thermal resists even on shields, but have low resists against explosive and kinetic.
The base resists of a ship are almost always modified by modules fitted on the ship. Resistance percentages are calculated in a way that many people find confusing. A module may list itself as having a 30% bonus to resistances, but the only time you'll actually see a 30% increase in resistance when using it is if your current resistance is 0%.
The way the calculations work is that the percentage is applied to the remaining damage after resists. If things didn't work this way, you'd easily get resistances above 100%, and shooting you would cause armor or shields to grow on your ship.
Resistances are easier to figure out if you think in terms of "damage vulnerability" rather than "damage resistance". A ship with 60% EM resist is then going to take 40% EM damage received. Adding a 30% resist module multiplies the damage taken by 0.7, so you now take 0.7*0.4 = 0.28 = 28% of the raw damage.
Because of stacking penalties, and the way resistances multiply together, it is not possible to be 100% resistant to a damage type[1].
For those interested in the math (pilots do not need to know these details if they don't want to), the final resist with multiple modules and stacking penalties can be calculated with the formula
- [math] \text{Resist} = 1 - ( 1 - R_0 )( 1 - R_1)( 1-R_2 \times 0.869)( 1 - R_3 \times 0.571)( 1 - R_4 \times 0.283)...[/math]
where R0 is the hull resist and R1, R2, R3,... are module resists in descending order.
Negative resistances
Certain effects will apply negative resists to a ship. These include incursion effects, Abyssal Deadspace effects and phenomena generators. The way these are applied may seem confusing, but they are simpler than they seem. The idea is exactly same as with normal resists explained above where the percentage change is applied to vulnerability (100% - resist) instead of resist.
A 50% resist penalty means that your ship will take 50% more damage.
Example: You fly your ship with 70% resist into a situation where you receive 50% resist penalty. Your new resist is 55%; how can this make any sense?
Your ship has 70% resistance meaning you will receive 30% of the incoming damage. If 50% resist penalty is applied on your ship you will take 50% more damage. You will be receiving 1.5×30% = 45% damage after your resists. So the new resistance is 100% - 45% = 55%.
The math is simply:
- [math] \text{New resist} = 1 - ( 1 - \text{Original resist} ) \times ( 1 + \text{Penalty} ) [/math]
The resist penalties will never cause the ship to have below 0% resist. If the penalty is big enough that the new resist would be negative, the new resist will simply be 0%.
Armor tanking
General Approach
Armor tanking emphasizes the use of low-slot modules to increase armor hit points, resistance to damage, and gain the ability to repair damage taken by armor. Regardless of the approach taken to armor tanking, understand that armor on T1 hulls has an inherent weakness to Explosive damage, and usually a mild weakness to Kinetic damage, and you should plan your resistance modules accordingly.
Armor-tanked ships generally have much stronger buffers than shield-tanked ships. This is aided by Armor having near-universally higher base damage resistances than shields (albeit with the opposite order of strengths and weaknesses), and several modules which increase armor hitpoints and resistances which have no shield equivalents.
Armor Repairers are more capacitor-efficient than Shield Boosters (in terms of raw HP recovered per GJ of capacitor used), and they repair large amounts of HP on every cycle. However, they also cycle very slowly, meaning that they effectively restore less HP per second than shield boosters; and the HP gained is applied at the end of the module cycle (rather than the beginning as it is for shield boosters), meaning that a pilot must anticipate when the repairs will be needed several seconds in advance.
Armor tanking modules generally do not use nearly as much CPU as shield tanking modules. (Some armor tanking modules even consume no CPU at all!) However, Armor Plates and Armor Repairers use much, much more powergrid than any shield-tanking modules. Because armor tanking modules take up low slots, they leave their ship's mid slots free for capacitor modules, Electronic Warfare modules, and damage application modules, which gives armor-tanked ships much more utility and versatility than shield-tanked ships. However, in exchange, because armor takes up low slots, and damage-increasing modules also take up low slots, armor-tanked ships generally have lower potential damage output than shield-tanked ships.
Once a ship's armor is depleted, only its hull stands between it and death. This means that, in theory, armor-tanked ships have smaller safety margins than shield-tanked ships. However, this is also fact that Gallente ships are designed around: some Gallente ships have bonuses to local armor repair modules, and Gallente ships also have the thickest hulls of any ships.
Armor Plates have a unique penalty to them: increased ship mass. This penalty reduces ship agility (acceleration and alignment time), and reduces the speed bonus gained from Propulsion equipment. Armor Rigs also (usually) reduce ship max speeds. As a result, heavily armored ships tend to be significantly slower than heavily shielded ships.
In short, the advantages of armor tanks are:
- A wide range of modules available to enhance resistances
- Armor repairers use less capacitor than shield boosters
- Relatively limited CPU demand and capacitor burden
- Mid slots are available for propulsion, tackle, EWAR, and damage-application modules
And the disadvantages of armor tanks are:
- (active tanks only) armor repairers only repair at the end of their cycle, requiring precise management from pilots
- Many armor tanking modules and rigs slow the ship down
- Use of low slots reduces space for damage-boosting modules
- Relatively greater powergrid demand
- Armor doesn't repair naturally on its own over time as shields do, so pilots might have to dock up and pay for repairs
Armor tanking is most common in Amarr and Gallente ships, which tend to have lots of low slots and sometimes have bonuses for armor resistance (Amarr) or active armor repairers (Gallente). Minmatar ships and even some Caldari ships are sometimes also given armor tanks: the Hurricane and Blackbird are two examples.
Racial Resistances
see also: Natural Resistances#Tech I armor resistances
One major consideration when choosing resistance modules is that different races' Tech 1 ships have slightly different base armor resistances. This is explained in the article on Natural Resistances, however for a discussion of tanking, there are four major takeaways:
- Amarr ships can generally get sufficient resistances using a combination of Multispectrum Energized Membranes, a Damage Control, and/or a Reactive Armor Hardener.
- Gallente ships generally need to run one Explosive Membrane, Coating, or Hardener
- Caldari ships are generally not armor-tanked at all, however on the rare occasion that they are, they generally need an Explosive, and possibly a Kinetic, resist module
- Minmatar ships generally need to run both an Explosive and a Kinetic resist module, or in extreme cases run full "Rainbow -1"
The reason for these takeaways is that one of the general goals in resistance modules is to have all four of your ship's resistances be at some fairly equal high value; and because different races have different base values, different amounts of effort are required to even the numbers.
Rainbow -1
"Rainbow" tanking refers to an attempt to maximize damage resistance by running one pure resistance module for each of the four damage types. This is generally only done on Battleships or Capital Ships, because of the large number of slots require to do it. However, because of the distribution of base armor resistances, rainbow tanking is generally not quite the most efficient way to maximize resistances. What is generally more efficient is "Rainbow -1": One Membrane or Hardener for each of Explosive, Kinetic, and Thermal, and then a single Multispectrum Energized Membrane. This strategy takes advantage of armor's naturally high EM resistance, improves the other three resistances to match, then uses a single Multispec to further improve everything. This has the added advantage of only applying 1 layer of Stacking Penalties to most resists and no Stacking Penalties at all to the EM resist, and synergizes very well in a fleet setting with Armored Command Bursts.
Armor tanking modules
Armor plates increase the ships armor HP by a flat number. The drawback is increased mass that results in slower and less agile ship. It is somewhat common to fit oversized plates. For example 1600mm plates on a cruiser. | |
Energized membranes are passive modules which increase armor resists. The resist bonus is increased by Armor Compensation skills.
Energized Membranes come in 5 types: one for each type of damage, and one Multispectrum which moderately resists all damage. | |
Resistance coatings are passive modules which increase armor resists. The resist bonus is increased by Armor Compensation skills. Resistance Coatings give smaller bonuses than Energized Membranes, and are generally much cheaper to buy, however they do not cost CPU to fit and so are very useful on ships with limited fitting space.
Resistance Coatings come in 5 types: one for each type of damage, and one Multispectrum which moderately resists all damage. | |
Armor hardeners are active modules which significantly increase one of the four armor resistances. They consume small amounts of Capacitor energy to run, and slightly more CPU to fit than Energized Membranes. They can also be Overheated for a further increase in strength, however they do not benefit from Armor Compensation skills.
(Active) Armor Hardeners come in 4 types: one for each type of damage. | |
Damage control is a passive module that increases a ship's shield, armor, and hull resists. This module is not stacking penalized with most other resist modules. Only a Reactive Armor Hardener is stacking penalized with a damage control. As a result, this module is commonly seen as one of the most efficient defensive modules in the game. | |
Assault damage control is a variant of the Damage Control which can only be used by Assault Frigates and Heavy Assault Cruisers. Passively, it gives weaker bonuses to shield, armor, and hull resistances than a normal Damage Control. In exchange, the ADC can be activated once every two minutes to give 12 seconds of massive reduction to all incoming damage. Like the normal Damage Control, the ADC is stacking penalized with the Reactive Armor Hardener but not with any other resist modules. | |
Reactive armor hardener is an active module that increases armor resists. it gives in total 60% resist bonus split across all four damage types. When first activated, the module gives 15% resistance to each type of damage. As the ship receives armor damage, every time the RAH cycles its resistances will change to become more resistant to the damage which was last sustained, and less resistant to other damage types which were not sustained. The resists shift by up to 6% per cycle per resist. This module is not stacking penalized with other modules except for Damage Control. | |
Armor repairers are modules that consume moderate amount of capacitor and use that to repair the ship's armor. The capacitor is consumed at the beginning of the cycle but the repair happens at the end of the cycle. | |
Ancillary armor repairers ("Ancils") are similar to normal armor repairers. These modules can be loaded with Nanite Repair Paste to drastically increase the repair amount for the first 8 cycles it is used. With paste the ancillary armor repairers repair considerably (~1.7x) more than normal T2 armor repairers. Each cycle consumes nanite paste (1 for small, 4 for medium, 8 for large). Once the paste runs out the module can still be used, however without paste the ancillary armor repairers repair considerably (~0.6x) less than T2 normal armor repairers. Reloading the paste takes one minute. During this time the module can not be used. As such, it is commonly recommended that pilots Disable Auto-Reload for ancillary armor repair modules, so that the module does not spontaneously become unavailable at an inopportune moment.
Ancillary Armor Repairers are almost exclusively used in PvP to provide strong burst of active tanking. Usage in PvE is generally not recommended due to the added cost of nanite paste and the unsustainability of the repair strength. (However this said, Ancils are still popular in Abyssal Deadspace.) Because of the limited number of full-strength cycles the module can perform, Ancillary Armor Repairers should always be run Overheated; and because of their extremely powerful repair cycles, Ancils are often only activated for single cycles at a time. | |
Layered Energized Membranes are passive modules that increase ship's armor by a percentage amount. These are very rarely used, as a plate and resist module are usually better than this module. | |
Layered Coatings are passive modules that increase ship's armor by a percentage amount. These are less effective than the energized membrane variant but do not cost CPU to fit. These are almost never used, as plates and resistance modules are more effective in almost all cases. | |
Remote armor repair systems consume capacitor to remotely repair armor on single target. The repair again happens at the end of the cycle. This can make it hard to repair targets if they die before the repair lands. Fairly short range when not fitted to a dedicated Logistics Frigate or Logistics Cruiser. Relatively long optimal range but short falloff range; as a result the effectiveness drops rapidly if the target is beyond optimal range. | |
Ancillary remote armor repair systems are the remote counterpart of local ancillary armor repairers. Like the local ancillary armor repairers These can be loaded with nanite repair paste for 8 cycles of increased repairs. However, once the paste runs out they will repair less than normal remote repairers. | |
Rigs
Tech II Armor Rigs tend to all be very expensive because of the rarity of one component (Intact Armor Plates) which they all use. | |
Implants
| |
Exile medical booster greatly increases the ship's active armor repair amount, however they carry a chance to reduce your Armor hitpoints, capacitor capacity, turret tracking, or missile damage application. |
Armor Tanking Skills
- Hull Upgrades
- 5% armor HP per level
- Required for armor plates, hardeners, membranes, and resist plates.
- Mechanics
- 5% hull HP per level
- Required for armor repairers
- Repair Systems
- 5% reduction in armor repair module cycle duration. It should be noted that a reduction in activation time increases the capacitor need of the module.
- Required for armor repairers
- EM Armor Compensation, Thermal Armor Compensation, Kinetic Armor Compensation, Explosive Armor Compensation
- 5% increase per level in the corresponding resist for membranes and resist plates
- Armor Rigging
- Reduces the drawbacks of armor rigs by 10% per level.
- Armor Layering
- 5% redution in mass penalty of armor plates per level.
- Resistance Phasing
- 10% reduction in cycle time and 15% reduction in capacitor usage of Reactive Armor Hardener (and Capital Flex Armor Hardener) per level.
Shield tanking
A shield tank icreases shields' ability to withstand and/or repair damage. This is the most common type of defense for ships with larger numbers of mid-slots, where most shield modules are fitted.
The versatility of shield modules is somewhat more limited than that of armor modules. Most notable is the lack of good passive shield hardeners. As a result, even buffer fit shield ships are often vulnurable to suficiently large number of energy neutralizers.
Shield modules generally fit in mid slots. This leaves low slots for damage modules, fitting modules or piloting modules. As a result, shield ships generally have higher damage output than their armored cousins. But using mid slots for tank can sometimes limit the ship fit into more or less pure damage dealing as the tank competes with tackling, EWAR, and propulsion modules.
Shield extenders and shield rigs apply a penalty to the ship's signature radius: they make it larger, making the ship easier to hit with turrets and easier to damage with missiles. Shields generally also have less buffer than armor ships. This is most notable when fighting against ships larger than your own.
Unlike Armor Repairers, Shield Boosters give the boost at the beginning of the cycle time instead of at the end, meaning you can wait until you need the shields to activate the shield booster instead of activating it in anticipation of needing it, as is commonly done with armor repairers. Shield boosters also repair much faster and more than armor repairers. This comes at cost of using more capacitor.
After shields are exhausted there is still some armor and hull remaining, leaving a little more room for error.
Shields naturally recharge themselves over time, while armor and hull damage remains until it is repaired. This passive regeneration is taken to extreme in "passive shield tanking", described below.
In short, the advantages of shield tanking are:
- Does not reduce speed or maneuverability.
- As a first line of defense, leaves you with armor and hull as a fallback if shields go down.
- Shields recharge on their own - no need to dock and pay for repairs.
- Shield boosting modules work more quickly than armor repair modules and apply effects immediately.
- Low slots are available for weapon enhancing modules.
And the disadvantages of shield tanking are:
- Increases signature radius – ship becomes easier to hit.
- Fewer kinds of enhancement modules – less choice than with armor.
- Shield recharge modules use more capacitor than armor repair modules.
- Mid slots are not available for EWAR, tackle or propulsion modules.
Shield tanks are most common on Caldari ships, followed by Minmatar ships. Both races' ships tend to have adequate numbers of mid slots; some Caldari ships have bonuses to shield resistances, and some Minmatar ships have bonuses to shield boosters. Shield tanks also synergize well with Minmatar ships' emphasis on speed. Some Gallente and Amarr ships are sometimes shield-tanked: one example is the Curse.
Active Shield Tanking
Active shield tanking is most commonly used in higher-level PvE, but also has a place in solo or small-gang PvP. Active shield tanking is based on using a shield booster to recover shield HP faster than incoming damage can deplete it, while also fitting modules to harden the shields' resistances.
Passive Shield Tanking
Unlike Armor hit points, shields will recharge themselves after taking damage. A passive Shield tank maximizes this natural recharge rate without the use of active booster modules. The shields of a ship have two stats that are relevant to passive recharge: shield capacity and shield recharge time. The shield capacity is simply the maximum HP for the shields while the recharge time tells how long it takes for the shields to recharge.
The concept behind the Passive Shield Tank is deceptively simple: find a ship with a relatively high natural recharge rate (Shield HP / Recharge time = Average recharge rate), then add as many additional shield hit points to your ship as possible using shield extenders. Because the recharge time for a given ship is a fixed amount no matter how many points of shields you have, adding more shield HP indirectly increases the recharge rate, because more HP are being recharged in the same amount of time. Now add passive modules that increase the recharge rate even further, such as Shield Rechargers, Shield Power Relays and Power Diagnostic Systems, and you have a monster sized buffer tank that also regenerates very quickly, without using any capacitor. Shield Flux Coils also increase recharge rate, but should be avoided because they also lower your shield hit points, which is self-defeating.
As the name implies, a fully passive tank does not require any modules that need to be “turned on” to function, and therefore does not require capacitor. The drawback to Passive Shield tanking is the number of modules required to pull it off, which leaves very little room to fit other useful modules such as damage improvement and tackling equipment, which makes this fitting of limited use outside of PvE combat.
Adding resistance modules will greatly increase the effectiveness of passive recharge. Some passive shield tanks also use Multispectrum Shield Hardeners and Shield Hardeners to improve damage resistance. Note that these do put a (gentle) load on the capacitor, and the capacitor's own recharge rate is reduced by the Shield Power Relays that increase shield recharge rates. Careful balancing is therefore necessary to make a passive shield tank work. When done correctly, however, this approach can be used to handle tough missions with a single ship.
It is generally advised NOT to mix modules that increase shield recharge rate (a passive shield tank) rate with modules that repair shield damage (an active shield tank).
Understand Shield Recharge Rates
All ships have shields, and all shields have a recharge rate.
A ship's information screen, on the attributes tab, under the shield heading, lists the total shield amount of the hull and the shield recharge time. The recharge time expresses how long it will take to go from 0% shields to roughly 98% shields when the ship is sitting idle in space and no one is repairing the shields or damaging them. That last ~2% of your shields will take much longer.
To get a crude measure of recharge rate, you can simply divide the shield HP by the time listed for recharging. But shields do not recharge at a constant rate: this only calculates an average rate. The actual behavior is that when the shield is near 0% or 100% it replenishes slower. The peak recharge rate will be 2.5x the average rate and will occur when the shields are damaged to 25% of shield maximum capacity.
Shield recharge rates above ~98% shield arr extremely low. For ships with small shield capacity it is essentially non-existent. The shield recharge rate also drops sharply below 25% capacity. Once shields have been damaged beyond 25% the passive tank "breaks" and the ship dies rapidly.
As the shield takes damage, its level goes down. In response, the rate at which it rebuilds itself goes up. The increase in shield recharge rate continues until it peaks at 25% of shield capacity. At this threshold, the default ship Health Alert noise will sound to warn the pilot that the shield is at its recharging limit. If it continues to take more damage than it can hold, the regeneration will drop off quickly. This means if constant damage is applied, the shield will regenerate less as it becomes empty, thus making it easier to shoot the armor below it.
The math for shield regeneration is exactly the same as that of the capacitor recharge rate. Two numerical attributes are required: shield capacity, and shield recharge time. These are both displayed in the ship's "show info" attributes panel in-game, below its capacity. Note that modules that refer to "recharge rate" modify the recharge time number, not the raw regeneration in HP/s.
- [math] \displaystyle\frac{\text{d}C}{\text{d}t} = \frac{ 10C_{\rm{max}}}{T} \left( \sqrt{ \frac{C}{C_{\rm{max}}} } - \frac{C}{C_{\rm{max}}} \right) [/math]
...where:
C is your current shield HP.
Cmax is your maximum shield HP.
dC/dt is your current shield regeneration in HP/s.
T is shield recharge time.
- Consequences
The fact that these attributes are both set has some interesting consequences. Notably for this calculation, recharge time is not dependent on anything else, including maximum shield capacity, as you might have intuitively expected. This has the effect that if two ships have the same "recharge time" attribute, and one has more capacity, then the one with the larger capacity will get more raw HP/s regeneration, and appear to "repair faster" in a passive tank despite reaching its maximum level in the same time.
- Calculating Average rate
Fitting a shield tank
In many cases the technical construction of the ship dictates the use of shields (or armor) as its primary defense. Any ship receiving a bonus to shield capabilites would likely use shields. And because most shield modules use medium power slots, a ship with more mid than low slots will tend to use shields. As a shield ships use mainly mid slots for defence, they can fit much higher damage output and are often faster.
Every ship has a shield. Whether or not a pilot decides to expand and improve the shield is his or her choice.
That said, here are the factors that you look for when you are thinking about shields:
- Shield specific hull bonus.
- Surplus of mid slots or shortage of low slots.
- More need to favor modules that improve weapons (which tend to need low slots).
- Less need for EWAR modules (which tend to need mid slots).
Shield extenders increase ships shield HP by a flat number. The drawback is increased signature radius that makes the ship easier to hit. Oversized modules are often used (Medium size on a Frigate class ship, for example). | |
Shield hardeners are active modules that increase ship's shield resists. Multispectrum Shield Hardener increases resist to all damage types but less than type specific modules. The name is misleading and the module does not adapt to damage like the reactive armor hardener. Active shield hardeners are considerably more effective than the passive shield resistance amplifiers. | |
Shield resistance amplifiers are passive modules that increase ship's shield resists. Easier to fit than active hardeners and do not need any capacitor. Considerably lower resist bonus compared to active hardeners. The resist bonus increases with appropriate shield compensation skill. There is no resistance amplifier that increases all resist types like there is for armor. | |
Damage control is a passive module that increases ship's shield, armor and hull resists. This module is not stacking penalized with any other shield resist module. | |
Shield power relays are passive modules that increase ship's shield recharge rate at the cost of reduced capacitor recharge rate. This module defines a passive shield tank. Since the relay modules fit in low slots, this means more Extenders may be fitted alongside them. On the other hand, this also means no low slot weapon upgrade modules for high damage. This will limit the situations where a passive tank may be used. One of the few low slot shield modules. | |
Shield flux coils are passive modules that increase ship's shield recharge rate at the cost of reduced shield capacity. The reduced shield capacity reduces the shield recharge rate but the recharge rate bonus on flux coils is larger than on power relays resulting in higher recharge rate. | |
Shield rechargers are passive mid slot modules which provide a modest increase to the shield recharge rate. If there is fitting room for shield extender then that may be a better choice. | |
Shield boosters consume ship's capacitor to repair (or boost, as the name says) the shields in exchange. Note that the repair happens at the beginning of the module cycle. Shield boosters generally have short cycle time and mediocre capacitor:hitpoint rate compared to Armor Repairers. | |
Ancillary shield booster provides a capacitor-free method of active shield tanking for limited time. They can be loaded with Capacitor Booster Charges, and will consume the loaded charges upon activation. When no charges are loaded, it will consume quite a large amount of capacitor instead. They will reload in 1 minute (60 seconds). Capacitor Booster Charges of different sizes can be fitted, however it is recommended to use the Navy variant of the smallest charge available (the accepted charge size is displayed on the Show Info tab). Using larger charges offers no benefits. Ancillary shield boosters are almost exclusively used in PvP situations to provide repairs without consuming the precious capacitor. Usage in PvE is not recommended due to the long reload time, the cost of Capacitor Booster Charges and burst tanking nature. | |
Shield boost amplifiers are passive mid slot modules that increase shield booster repair amount without increasing the capacitor usage. They are completely passive and use only 1 powergrid, however they require quite a bit of CPU. This makes these impractical for smaller hulls due to the limited med slots and fitting resources. However, Boost Amplifiers double the heat damage from overheating. | |
Remote shield boosters use capacitor to repair shields of a single target. Moderately short Optimal range and long Falloff range. Note that the repair is delivered at the start of the cycle. | |
Ancillary remote shield boosters are remote shield boosters that can be loaded with cap boosters. They behave exactly the same with local Ancillary Shield Boosters except they repair other ships instead. Usage without Cap Booster Charges are highly discouraged due to the large Capacitor usage. | |
Power diagnostics systems are low slot engineering modules. Small percentage increase to shield capacity, capacitor capacity, powergrid output, shield recharge rate and capacitor recharge rate. | |
Capacitor power relays are not exactly a shield modules, but an engineering module. They are a passive low slot module that increase capacitor recharge rate at the expense of reduced shield booster repair amount. These are generally avoided on active shield tanked ships. The penalty does not apply to remote shield boosters. | |
Rigs
| |
Implants
| |
Blue Pill medical booster greatly increases the ship's active shield boosting amount, however they have a chance to penalize your ship's Capacitor and Shield capacity, your turret's optimal range, or your missile's explosion velocity. |
Shield skills
The following skills are required to field a full Tech 2 Shield tank:
- Shield Management
- 5% increase in shield capacity per level.
- Required for shield boost amplifiers.
- Energy Grid Upgrades
- 5% PG per level. Required for shield power relays and power diagnostic units.
- Shield Upgrades
- 5% reduction in shield extener PG usage.
- Required for resistance amplifier, shield recharger modules.
- Shield Operation
- 5% reduction in shield recharge time per level.
- Required for shield boosters and maximize shield recharge.
- Tactical Shield Manipulation
- Reduces damage bleeding to armor through shields-.
- Required for shield hardeners. No good reason for training beyond IV unless you want to use certain capital modules.
- EM Shield Compensation, Thermal Shield Compensation, Kinetic Shield Compensation, Explosive Shield Compensation
- Increases the specific resist of the passive shield resistance amplifiers.
- Training the four damage type-specific shield compensation skills is less important. The passive Shield Amplifier modules benefit most from them, but are not widely used, but active resistance modules (like Multispectrum Shield Hardeners) get no benefit at all.
- Shield Compensation
- 2% reduced capacitor usage for shield boosters.
- Shield Emission Systems
- 5% reduced capacitor usage for remote shield boosters.
- Shield Rigging
- Reduces the drawbacks of shield rigs.
- Hull Upgrades
- 5% hull HP per level. Required for damage control.
Hull tanking
Hull Tanking is a rare and dangerous art employed only by the pilots with either the most bravery or the thickest of skulls. With hull tanking there is no safety buffer. Once your hull tank is gone your ship goes out in glorious explosion. Additionally, incoming hull damage slowly bleeds into the ship's modules, causing them to artificially burn out and making it unwise to hull tank for long period of time. Hull tanking is also very much an 'all or nothing' affair: it is nearly impossible to repair hull damage without docking in a starbase.
Regardless of these disadvantages, hull tanking is sometimes done unironically, as with certain ships their base hull HPs are so high that a hull tank is actually the best way to maximize their HP buffer. A bait ship with hull tank can lull attackers into a false sense of victory as they see the shields and armor vanish, only to spend ages grinding down the hull. Gallente ships like Hecate, Brutix, and Megathron have notably thick hulls (and very high damage Blaster turrets), making them viable at hull tanking.
As all the practically useful hull tanking modules are passive, a hull tank is resistant to neuting and other forms of capacitor warfare.
Reinforced bulkheads give a percentage bonus to hull HP. These are the only modules that increase hull HP. | |
Damage control increases ship's hull resist to all damage. | |
Hull repairers use capacitor to repair hull. These modules are extremely slow and can not be practically used in combat. | |
Remote hull repairers allow you to remotely repair another ship's hull. These modules are extremely slow and can not be practically used in combat. No ship is bonused for using these modules. | |
Transverse bulkheads give a large percentage bonus to hull HP. No other rig gives any bonuses to hull. | |
Hull Repair Bots allow a logistics ship to remotely repair another ship's hull. These are the only form of hull logistics that are commonly used, as they count as Logistics Drones and thus receive bonuses from certain Logistics Cruisers. They are commonly used as an emergency backup, to patch up the hull of an allied ship which recently took a little too much heat. |
Hull tanking is improved by only a single skill:
- Mechanics
- 5% hull HP per level. Required for damage control.
Remote repair
- Main article: Logistics
Remote repairing refers to the use of modules to restore the shields or armor of another ship. Typically this involves a wing of dedicated logistics ships, which have bonuses for the range and effectiveness of remote shield boosters and remote armor repairers.
A remote repair tactic allows the main fleet to fit large buffer tanks that makes them able to survive the alpha of enemy fleet, secure in the knowledge that their logistics wing will repair damage. This also allows the logi wing to focus the repping power of whole fleet on single ship.
Spider Tanking
While normal logistic fleet configuration outsources repairing to specialized logistics ships, "spider tanking" shares the repairing and combat duty between the whole fleet. Most or all of the ships in the fleet fit one or more remote restoration modules, and the fleet as a whole repairs whichever member comes under attack.
This is an advanced tactic hat requires a good deal of coordination to function effectively. It is most commonly used with battleships, particularly the Dominix, which has no weapon bonuses (only drone bonuses), and so can mount remote restoration modules in its free high slots if pilots do not want to use those slots for weapons.
Burst resistance modules
There are also a couple of modules that can be activated to give a short burst of high resistances. Assault Frigates and Heavy Assault Cruisers can equip an Assault Damage Control (or ADC), which gives lower passive resists compared to a regular Damage Control, but can be activated to give a burst of 95% omni resistance to shield, armor, and hull for up to 14.4 seconds with a 150 second reactivation delay. Capital Ships can equip a Capital Hull Emergency Energizer (or CEHE), which only gives a 95% omni resistance bonus to structure, has no passive benefit, and burns out after a single use. Both modules take the place of a regular Damage Control.
References
- ^ It is possible to have over 100% resist by overheating a deadspace hardener on a Deep Space Transport in a red giant wormhole system. This will result in immediate destruction of the ship if any damage is taken—so don't do it.